Как найти d в арифметической прогрессии. Арифметическая прогрессия

В чём главная суть формулы?

Эта формула позволяет найти любой ПО ЕГО НОМЕРУ "n" .

Разумеется, надо знать ещё первый член a 1 и разность прогрессии d , ну так без этих параметров конкретную прогрессию и не запишешь.

Заучить (или зашпаргалить) эту формулу мало. Надо усвоить её суть и поприменять формулу в различных задачках. Да ещё и не забыть в нужный момент, да...) Как не забыть - я не знаю. А вот как вспомнить, при необходимости, - точно подскажу. Тем, кто урок до конца осилит.)

Итак, разберёмся с формулой n-го члена арифметической прогрессии.

Что такое формула вообще - мы себе представляем.) Что такое арифметическая прогрессия, номер члена, разность прогресии - доступно изложено в предыдущем уроке. Загляните, кстати, если не читали. Там всё просто. Осталось разобраться, что такое n-й член.

Прогрессию в общем виде можно записать в виде ряда чисел:

a 1 , a 2 , a 3 , a 4 , a 5 , .....

a 1 - обозначает первый член арифметической прогрессии, a 3 - третий член, a 4 - четвёртый, и так далее. Если нас интересует пятый член, скажем, мы работаем с a 5 , если сто двадцатый - с a 120 .

А как обозначить в общем виде любой член арифметической прогрессии, с любым номером? Очень просто! Вот так:

a n

Это и есть n-й член арифметической прогрессии. Под буквой n скрываются сразу все номера членов: 1, 2, 3, 4, и так далее.

И что нам даёт такая запись? Подумаешь, вместо цифры буковку записали...

Эта запись даёт нам мощный инструмент для работы с арифметической прогрессией. Используя обозначение a n , мы можем быстро найти любой член любой арифметической прогрессии. И ещё кучу задач по прогрессии решить. Сами дальше увидите.

В формуле n-го члена арифметической прогрессии:

a n = a 1 + (n-1)d

a 1 - первый член арифметической прогрессии;

n - номер члена.

Формула связывает ключевые параметры любой прогрессии: a n ; a 1 ; d и n . Вокруг этих параметров и крутятся все задачки по прогрессии.

Формула n-го члена может использоваться и для записи конкретной прогрессии. Например, в задаче может быть сказано, что прогрессия задана условием:

a n = 5 + (n-1)·2.

Такая задачка может и в тупик поставить... Нет ни ряда, ни разности... Но, сравнивая условие с формулой, легко сообразить, что в этой прогрессии a 1 =5, а d=2.

А бывает ещё злее!) Если взять то же условие: a n = 5 + (n-1)·2, да раскрыть скобки и привести подобные? Получим новую формулу:

a n = 3 + 2n.

Это Только не общая, а для конкретной прогрессии. Вот здесь и таится подводный камень. Некоторые думают, что первый член - это тройка. Хотя реально первый член - пятёрка... Чуть ниже мы поработаем с такой видоизменённой формулой.

В задачах на прогрессию встречается ещё одно обозначение - a n+1 . Это, как вы догадались, "эн плюс первый" член прогрессии. Смысл его прост и безобиден.) Это член прогрессии, номер которого больше номера n на единичку. Например, если в какой-нибудь задаче мы берём за a n пятый член, то a n+1 будет шестым членом. И тому подобное.

Чаще всего обозначение a n+1 встречается в рекуррентных формулах. Не пугайтесь этого страшного слова!) Это просто способ выражения члена арифметической прогрессии через предыдущий. Допустим, нам дана арифметическая прогрессия вот в таком виде, с помощью рекуррентной формулы:

a n+1 = a n +3

a 2 = a 1 + 3 = 5+3 = 8

a 3 = a 2 + 3 = 8+3 = 11

Четвёртый - через третий, пятый - через четвёртый, и так далее. А как посчитать сразу, скажем двадцатый член, a 20 ? А никак!) Пока 19-й член не узнаем, 20-й не посчитать. В этом и есть принципиальное отличие рекуррентной формулы от формулы n-го члена. Рекуррентная работает только через предыдущий член, а формула n-го члена - через первый и позволяет сразу находить любой член по его номеру. Не просчитывая весь ряд чисел по порядочку.

В арифметической прогрессии рекуррентную формулу легко превратить в обычную. Посчитать пару последовательных членов, вычислить разность d, найти, если надо, первый член a 1 , записать формулу в обычном виде, да и работать с ней. В ГИА подобные задания частенько встречаются.

Применение формулы n-го члена арифметической прогрессии.

Для начала рассмотрим прямое применение формулы. В конце предыдущего урока была задачка:

Дана арифметическая прогрессия (a n). Найти a 121 , если a 1 =3, а d=1/6.

Эту задачку можно безо всяких формул решить, просто исходя из смысла арифметической прогрессии. Прибавлять, да прибавлять... Часок-другой.)

А по формуле решение займёт меньше минуты. Можете засекать время.) Решаем.

В условиях приведены все данные для использования формулы: a 1 =3, d=1/6. Остаётся сообразить, чему равно n. Не вопрос! Нам надо найти a 121 . Вот и пишем:

Прошу обратить внимание! Вместо индекса n появилось конкретное число: 121. Что вполне логично.) Нас интересует член арифметической прогрессии номер сто двадцать один. Вот это и будет наше n. Именно это значение n = 121 мы и подставим дальше в формулу, в скобки. Подставляем все числа в формулу и считаем:

a 121 = 3 + (121-1)·1/6 = 3+20 = 23

Вот и все дела. Так же быстро можно было бы найти и пятьсот десятый член, и тысяча третий, любой. Ставим вместо n нужный номер в индексе у буквы "a" и в скобках, да и считаем.

Напомню суть: эта формула позволяет найти любой член арифметической прогрессии ПО ЕГО НОМЕРУ "n" .

Решим задание похитрее. Пусть нам попалась такая задачка:

Найдите первый член арифметической прогрессии (a n), если a 17 =-2; d=-0,5.

Если возникли затруднения, подскажу первый шаг. Запишите формулу n-го члена арифметической прогрессии! Да-да. Руками запишите, прямо в тетрадке:

a n = a 1 + (n-1)d

А теперь, глядя на буквы формулы, соображаем, какие данные у нас есть, а чего не хватает? Имеется d=-0,5, имеется семнадцатый член... Всё? Если считаете, что всё, то задачу не решите, да...

У нас ещё имеется номер n ! В условии a 17 =-2 спрятаны два параметра. Это и значение семнадцатого члена (-2), и его номер (17). Т.е. n=17. Эта "мелочь" часто проскакивает мимо головы, а без неё, (без "мелочи", а не головы!) задачу не решить. Хотя... и без головы тоже.)

Теперь можно просто тупо подставить наши данные в формулу:

a 17 = a 1 + (17-1)·(-0,5)

Ах да, a 17 нам известно, это -2. Ну ладно, подставим:

-2 = a 1 + (17-1)·(-0,5)

Вот, в сущности, и всё. Осталось выразить первый член арифметической прогрессии из формулы, да посчитать. Получится ответ: a 1 = 6.

Такой приём - запись формулы и простая подстановка известных данных - здорово помогает в простых заданиях. Ну, надо, конечно, уметь выражать переменную из формулы, а что делать!? Без этого умения математику можно вообще не изучать...

Ещё одна популярная задачка:

Найдите разность арифметической прогрессии (a n), если a 1 =2; a 15 =12.

Что делаем? Вы удивитесь, пишем формулу!)

a n = a 1 + (n-1)d

Соображаем, что нам известно: a 1 =2; a 15 =12; и (специально выделю!) n=15. Смело подставляем в формулу:

12=2 + (15-1)d

Считаем арифметику.)

12=2 + 14d

d =10/14 = 5/7

Это правильный ответ.

Так, задачи на a n , a 1 и d порешали. Осталось научиться номер находить:

Число 99 является членом арифметической прогрессии (a n), где a 1 =12; d=3. Найти номер этого члена.

Подставляем в формулу n-го члена известные нам величины:

a n = 12 + (n-1)·3

На первый взгляд, здесь две неизвестные величины: a n и n. Но a n - это какой-то член прогрессии с номером n ... И этот член прогрессии мы знаем! Это 99. Мы не знаем его номер n, так этот номер и требуется найти. Подставляем член прогрессии 99 в формулу:

99 = 12 + (n-1)·3

Выражаем из формулы n , считаем. Получим ответ: n=30.

А теперь задачка на ту же тему, но более творческая):

Определите, будет ли число 117 членом арифметической прогрессии (a n):

-3,6; -2,4; -1,2 ...

Опять пишем формулу. Что, нет никаких параметров? Гм... А глазки нам зачем дадены?) Первый член прогрессии видим? Видим. Это -3,6. Можно смело записать: a 1 =-3,6. Разность d можно из ряда определить? Легко, если знаете, что такое разность арифметической прогрессии:

d = -2,4 - (-3,6) = 1,2

Так, самое простое сделали. Осталось разобраться с неизвестным номером n и непонятным числом 117. В предыдущей задачке хоть было известно, что дан именно член прогрессии. А здесь и того не знаем... Как быть!? Ну, как быть, как быть... Включить творческие способности!)

Мы предположим, что 117 - это, всё-таки, член нашей прогрессии. С неизвестным номером n . И, точно как в предыдущей задаче, попробуем найти этот номер. Т.е. пишем формулу (да-да!)) и подставляем наши числа:

117 = -3,6 + (n-1)·1,2

Опять выражаем из формулы n , считаем и получаем:

Опаньки! Номер получился дробный! Сто один с половиной. А дробных номеров в прогрессиях не бывает. Какой вывод сделаем? Да! Число 117 не является членом нашей прогрессии. Оно находится где-то между сто первым и сто вторым членом. Если бы номер получился натуральным, т.е. положительным целым, то число было бы членом прогрессии с найденным номером. А в нашем случае, ответ задачи будет: нет.

Задача на основе реального варианта ГИА:

Арифметическая прогрессия задана условием:

a n = -4 + 6,8n

Найти первый и десятый члены прогрессии.

Здесь прогрессия задана не совсем привычным образом. Формула какая-то... Бывает.) Однако, эта формула (как я писал выше) - тоже формула n-го члена арифметической прогрессии! Она тоже позволяет найти любой член прогрессии по его номеру.

Ищем первый член. Тот, кто думает. что первый член - минус четыре, фатально ошибается!) Потому, что формула в задаче - видоизменённая. Первый член арифметической прогрессии в ней спрятан. Ничего, сейчас отыщем.)

Так же, как и в предыдущих задачах, подставляем n=1 в данную формулу:

a 1 = -4 + 6,8·1 = 2,8

Вот! Первый член 2,8, а не -4!

Аналогично ищем десятый член:

a 10 = -4 + 6,8·10 = 64

Вот и все дела.

А теперь, тем кто дочитал до этих строк, - обещанный бонус.)

Предположим, в сложной боевой обстановке ГИА или ЕГЭ, вы подзабыли полезную формулу n-го члена арифметической прогрессии. Что-то припоминается, но неуверенно как-то... То ли n там, то ли n+1, то ли n-1... Как быть!?

Спокойствие! Эту формулку легко вывести. Не очень строго, но для уверенности и правильного решения точно хватит!) Для вывода достаточно помнить элементарный смысл арифметической прогрессии и иметь пару-тройку минут времени. Нужно просто нарисовать картинку. Для наглядности.

Рисуем числовую ось и отмечаем на ней первый. второй, третий и т.п. члены. И отмечаем разность d между членами. Вот так:

Смотрим на картинку и соображаем: чему равняется второй член? Второй одно d :

a 2 =a 1 +1 ·d

Чему равняется третий член? Третий член равняется первый член плюс два d .

a 3 =a 1 +2 ·d

Улавливаете? Я не зря некоторые слова выделяю жирным шрифтом. Ну ладно, ещё один шаг).

Чему равняется четвёртый член? Четвёртый член равняется первый член плюс три d .

a 4 =a 1 +3 ·d

Пора сообразить, что количество промежутков, т.е. d , всегда на один меньше, чем номер искомого члена n . Т.е., до номера n, количество промежутков будет n-1. Стало быть, формула будет (без вариантов!):

a n = a 1 + (n-1)d

Вообще, наглядные картинки очень помогают решать многие задачи в математике. Не пренебрегайте картинками. Но если уж картинку нарисовать затруднительно, то... только формула!) Кроме того, формула n-го члена позволяет подключить к решению весь мощный арсенал математики - уравнения, неравенства, системы и т.д. Картинку-то в уравнение не вставишь...

Задания для самостоятельного решения.

Для разминки:

1. В арифметической прогрессии (a n) a 2 =3; a 5 =5,1. Найти a 3 .

Подсказка: по картинке задача решается секунд за 20... По формуле - сложнее получается. Но для освоения формулы - полезнее.) В Разделе 555 эта задачка решена и по картинке, и по формуле. Почувствуйте разницу!)

А это - уже не разминка.)

2. В арифметической прогрессии (a n) a 85 =19,1; a 236 =49, 3. Найти a 3 .

Что, неохота картинку рисовать?) Ещё бы! Уж лучше по формуле, да...

3. Арифметическая прогрессия задана условием: a 1 =-5,5; a n+1 = a n +0,5. Найдите сто двадцать пятый член этой прогрессии.

В этом задании прогрессия задана рекуррентным способом. Но считать до сто двадцать пятого члена... Не всем такой подвиг под силу.) Зато формула n-го члена по силам каждому!

4. Дана арифметическая прогрессия (a n):

-148; -143,8; -139,6; -135,4, .....

Найти номер наименьшего положительного члена прогрессии.

5. По условию задания 4 найти сумму наименьшего положительного и наибольшего отрицательного членов прогрессии.

6. Произведение пятого и двенадцатого членов возрастающей арифметической прогрессии равно -2,5, а сумма третьего и одиннадцатого членов равна нулю. Найти a 14 .

Не самая простая задачка, да...) Здесь способ "на пальцах" не прокатит. Придётся формулы писать да уравнения решать.

Ответы (в беспорядке):

3,7; 3,5; 2,2; 37; 2,7; 56,5

Получилось? Это приятно!)

Не всё получается? Бывает. Кстати, в последнем задании есть один тонкий момент. Внимательность при чтении задачи потребуется. И логика.

Решение всех этих задач подробно разобрано в Разделе 555. И элемент фантазии для четвёртой, и тонкий момент для шестой, и общие подходы для решения всяких задач на формулу n-го члена - всё расписано. Рекомендую.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Сумма арифметической прогрессии.

Сумма арифметической прогрессии - штука простая. И по смыслу, и по формуле. Но задания по этой теме бывают всякие. От элементарных до вполне солидных.

Сначала разберёмся со смыслом и формулой суммы. А потом и порешаем. В своё удовольствие.) Смысл суммы прост, как мычание. Чтобы найти сумму арифметической прогрессии надо просто аккуратно сложить все её члены. Если этих членов мало, можно складывать безо всяких формул. Но если много, или очень много... сложение напрягает.) В этом случае спасает формула.

Формула суммы выглядит просто:

Разберёмся, что за буковки входят в формулу. Это многое прояснит.

S n - сумма арифметической прогрессии. Результат сложения всех членов, с первого по последний. Это важно. Складываются именно все члены подряд, без пропусков и перескоков. И, именно, начиная с первого. В задачках, типа найти сумму третьего и восьмого членов, или сумму членов с пятого по двадцатый - прямое применение формулы разочарует.)

a 1 - первый член прогрессии. Здесь всё понятно, это просто первое число ряда.

a n - последний член прогрессии. Последнее число ряда. Не очень привычное название, но, в применении к сумме, очень даже годится. Дальше сами увидите.

n - номер последнего члена. Важно понимать, что в формуле этот номер совпадает с количеством складываемых членов.

Определимся с понятием последнего члена a n . Вопрос на засыпку: какой член будет последним, если дана бесконечная арифметическая прогрессия?)

Для уверенного ответа нужно понимать элементарный смысл арифметической прогрессии и... внимательно читать задание!)

В задании на поиск суммы арифметической прогрессии всегда фигурирует (прямо или косвенно) последний член, которым следует ограничиться. Иначе конечной, конкретной суммы просто не существует. Для решения не суть важно, какая задана прогрессия: конечная, или бесконечная. Не суть важно, как она задана: рядом чисел, или формулой n-го члена.

Самое главное - понимать, что формула работает с первого члена прогрессии до члена c номером n. Собственно, полное название формулы выглядит вот так: сумма n первых членов арифметической прогрессии. Количество этих самых первых членов, т.е. n , определяется исключительно заданием. В задании вся эта ценная информация частенько зашифровывается, да... Но ничего, в примерах ниже мы эти секреты пораскрываем.)

Примеры заданий на сумму арифметической прогрессии.

Прежде всего, полезная информация:

Основная сложность в заданиях на сумму арифметической прогрессии заключается в правильном определении элементов формулы.

Эти самые элементы составители заданий шифруют с безграничной фантазией.) Здесь главное - не бояться. Понимая суть элементов, достаточно просто их расшифровать. Разберём подробно несколько примеров. Начнём с задания на основе реального ГИА.

1. Арифметическая прогрессия задана условием: a n = 2n-3,5. Найдите сумму первых 10 её членов.

Хорошее задание. Лёгкое.) Нам для определения суммы по формуле чего надо знать? Первый член a 1 , последний член a n , да номер последнего члена n.

Где взять номер последнего члена n ? Да там же, в условии! Там сказано: найти сумму первых 10 членов. Ну и с каким номером будет последний, десятый член?) Вы не поверите, его номер - десятый!) Стало быть, вместо a n в формулу будем подставлять a 10 , а вместо n - десятку. Повторю, номер последнего члена совпадает с количеством членов.

Осталось определить a 1 и a 10 . Это легко считается по формуле n-го члена, которая дана в условии задачи. Не знаете, как это сделать? Посетите предыдущий урок, без этого - никак.

a 1 = 2·1 - 3,5 = -1,5

a 10 =2·10 - 3,5 =16,5

S n = S 10 .

Мы выяснили значение всех элементов формулы суммы арифметической прогрессии. Остаётся подставить их, да посчитать:

Вот и все дела. Ответ: 75.

Ещё задание на основе ГИА. Чуть посложнее:

2. Дана арифметическая прогрессия (a n), разность которой равна 3,7; a 1 =2,3. Найти сумму первых 15 её членов.

Сразу пишем формулу суммы:

Эта формулка позволяет нам найти значение любого члена по его номеру. Ищем простой подстановкой:

a 15 = 2,3 + (15-1)·3,7 = 54,1

Осталось подставить все элементы в формулу суммы арифметической прогрессии и посчитать ответ:

Ответ: 423.

Кстати, если в формулу суммы вместо a n просто подставим формулу n-го члена, получим:

Приведём подобные, получим новую формулу суммы членов арифметической прогрессии:

Как видим, тут не требуется n-й член a n . В некоторых задачах эта формула здорово выручает, да... Можно эту формулу запомнить. А можно в нужный момент её просто вывести, как здесь. Ведь формулу суммы и формулу n-го члена всяко надо помнить.)

Теперь задание в виде краткой шифровки):

3. Найти сумму всех положительных двузначных чисел, кратных трём.

Во как! Ни тебе первого члена, ни последнего, ни прогрессии вообще... Как жить!?

Придётся думать головой и вытаскивать из условия все элементы суммы арифметической прогрессии. Что такое двузначные числа - знаем. Из двух циферок состоят.) Какое двузначное число будет первым ? 10, надо полагать.) А последнее двузначное число? 99, разумеется! За ним уже трёхзначные пойдут...

Кратные трём... Гм... Это такие числа, которые делятся на три нацело, вот! Десятка не делится на три, 11 не делится... 12... делится! Так, кое-что вырисовывается. Уже можно записать ряд по условию задачи:

12, 15, 18, 21, ... 96, 99.

Будет ли этот ряд арифметической прогрессией? Конечно! Каждый член отличается от предыдущего строго на тройку. Если к члену прибавить 2, или 4, скажем, результат, т.е. новое число, уже не поделится нацело на 3. До кучи можно сразу и разность арифметической прогрессии определить: d = 3. Пригодится!)

Итак, можно смело записать кое-какие параметры прогрессии:

А какой будет номер n последнего члена? Тот, кто думает, что 99 - фатально заблуждается... Номера - они всегда подряд идут, а члены у нас - через тройку перескакивают. Не совпадают они.

Тут два пути решения. Один путь - для сверхтрудолюбивых. Можно расписать прогрессию, весь ряд чисел, и посчитать пальчиком количество членов.) Второй путь - для вдумчивых. Нужно вспомнить формулу n-го члена. Если формулу применить к нашей задаче, получим, что 99 - это тридцатый член прогрессии. Т.е. n = 30.

Смотрим на формулу суммы арифметической прогрессии:

Смотрим, и радуемся.) Мы вытащили из условия задачи всё необходимое для расчёта суммы:

a 1 = 12.

a 30 = 99.

S n = S 30 .

Остаётся элементарная арифметика. Подставляем числа в формулу и считаем:

Ответ: 1665

Ещё один тип популярных задачек:

4. Дана арифметическая прогрессия:

-21,5; -20; -18,5; -17; ...

Найти сумму членов с двадцатого по тридцать четвёртый.

Смотрим на формулу суммы и... огорчаемся.) Формула, напомню, считает сумму с первого члена. А в задаче нужно считать сумму с двадцатого... Не сработает формула.

Можно, конечно, расписать всю прогрессию в ряд, да поскладывать члены с 20 по 34. Но... как-то тупо и долго получается, правда?)

Есть более элегантное решение. Разобьём наш ряд на две части. Первая часть будет с первого члена по девятнадцатый. Вторая часть - с двадцатого по тридцать чётвёртый. Понятно, что если мы посчитаем сумму членов первый части S 1-19 , да сложим с суммой членов второй части S 20-34 , получим сумму прогрессии с первого члена по тридцать четвёртый S 1-34 . Вот так:

S 1-19 + S 20-34 = S 1-34

Отсюда видно, что найти сумму S 20-34 можно простым вычитанием

S 20-34 = S 1-34 - S 1-19

Обе суммы в правой части считаются с первого члена, т.е. к ним вполне применима стандартная формула суммы. Приступаем?

Вытаскиваем из условия задачи парметры прогрессии:

d = 1,5.

a 1 = -21,5.

Для расчёта сумм первых 19 и первых 34 членов нам нужны будут 19-й и 34-й члены. Считаем их по формуле n-го члена, как в задаче 2:

a 19 = -21,5 +(19-1)·1,5 = 5,5

a 34 = -21,5 +(34-1)·1,5 = 28

Остаётся всего ничего. От суммы 34 членов отнять сумму 19 членов:

S 20-34 = S 1-34 - S 1-19 = 110,5 - (-152) = 262,5

Ответ: 262,5

Одно важное замечание! В решении этой задачи имеется очень полезная фишка. Вместо прямого расчёта того, что нужно (S 20-34), мы посчитали то, что, казалось бы, не нужно - S 1-19 . А уж потом определили и S 20-34 , отбросив от полного результата ненужное. Такой "финт ушами" частенько спасает в злых задачках.)

В этом уроке мы рассмотрели задачи, для решения которых достаточно понимать смысл суммы арифметической прогрессии. Ну и пару формул знать надо.)

Практический совет:

При решении любой задачи на сумму арифметической прогрессии рекомендую сразу выписывать две главные формулы из этой темы.

Формулу n-го члена:

Эти формулы сразу подскажут, что нужно искать, в каком направлении думать, чтобы решить задачу. Помогает.

А теперь задачи для самостоятельного решения.

5. Найти сумму всех двузначных чисел, которые не делятся нацело на три.

Круто?) Подсказка скрыта в замечании к задаче 4. Ну и задачка 3 поможет.

6. Арифметическая прогрессия задана условием: a 1 =-5,5; a n+1 = a n +0,5. Найдите сумму первых 24 её членов.

Непривычно?) Это рекуррентная формула. Про неё можно прочитать в предыдущем уроке. Не игнорируйте ссылку, такие задачки в ГИА частенько встречаются.

7. Вася накопил к Празднику денег. Целых 4550 рублей! И решил подарить самому любимому человеку (себе) несколько дней счастья). Пожить красиво, ни в чём себе не отказывая. Потратить в первый день 500 рублей, а в каждый последующий день тратить на 50 рублей больше, чем в предыдущий! Пока не кончится запас денег. Сколько дней счастья получилось у Васи?

Сложно?) Поможет дополнительная формула из задачи 2.

Ответы (в беспорядке): 7, 3240, 6.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Инструкция

Арифметическая прогрессия - это последовательность вида a1, a1+d, a1+2d..., a1+(n-1)d. Число d шагом прогрессии .Очевидно, что общая произвольного n-го члена арифметической прогрессии имеет вид: An = A1+(n-1)d. Тогда зная один из членов прогрессии , член прогрессии и шаг прогрессии , можно , то есть номер члена прогресси. Очевидно, он будет определяться по формуле n = (An-A1+d)/d.

Пусть теперь известен m-ый член прогрессии и -то другой член прогрессии - n-ый, но n , как и в предыдущем случае, но известно, что n и m не совпадают.Шаг прогрессии может быть вычислен по формуле: d = (An-Am)/(n-m). Тогда n = (An-Am+md)/d.

Если известна сумма нескольких элементов арифметической прогрессии , а также ее первый и последний , то количество этих элементов тоже можно определить.Сумма арифметической прогрессии будет равна: S = ((A1+An)/2)n. Тогда n = 2S/(A1+An) - чденов прогрессии . Используя тот факт, что An = A1+(n-1)d, эту формулу можно переписать в виде: n = 2S/(2A1+(n-1)d). Из этой можно выразить n, решая квадратное уравнение.

Арифметической последовательностью называют такой упорядоченный набор чисел, каждый член которого, кроме первого, отличается от предыдущего на одну и ту же величину. Эта постоянная величина называется разностью прогрессии или ее шагом и может быть рассчитана по известным членам арифметической прогрессии.

Инструкция

Если из условий задачи известны значения первого и второго или любой другой пары соседних членов , для вычисления разности (d) просто отнимите от последующего члена предыдущий. Получившаяся величина может быть как положительным, так и отрицательным числом - это зависит от того, является ли прогрессия возрастающей . В общей форме решение для произвольно взятой пары (aᵢ и aᵢ₊₁) соседних членов прогрессии запишите так: d = aᵢ₊₁ - aᵢ.

Для пары членов такой прогрессии, один из которых является первым (a₁), а другой - любым другим произвольно выбранным, тоже можно составить формулу нахождения разности (d). Однако в этом случае обязательно должен быть известен порядковый номер (i) произвольного выбранного члена последовательности. Для вычисления разности сложите оба числа, а полученный результат разделите на уменьшенный на единицу порядковый номер произвольного члена. В общем виде эту формулу запишите так: d = (a₁+ aᵢ)/(i-1).

Если кроме произвольного члена арифметической прогрессии с порядковым номером i известен другой ее член с порядковым номером u, измените формулу из предыдущего шага соответствующим образом. В этом случае разностью (d) прогрессии будет сумма этих двух членов, поделенная на разность их порядковых номеров: d = (aᵢ+aᵥ)/(i-v).

Формула вычисления разности (d) несколько усложнится, если в условиях задачи дано значение первого ее члена (a₁) и сумма (Sᵢ) заданного числа (i) первых членов арифметической последовательности. Для получения искомого значения разделите сумму на количество составивших ее членов, отнимите значение первого числа в последовательности, а результат удвойте. Получившуюся величину разделите на уменьшенное на единицу число членов, составивших сумму. В общем виде формулу вычисления дискриминанта запишите так: d = 2*(Sᵢ/i-a₁)/(i-1).

Многие слышали об арифметической прогрессии, но не все хорошо представляют, что это такое. В данной статье дадим соответствующее определение, а также рассмотрим вопрос, как найти разность прогрессии арифметической, и приведем ряд примеров.

Математическое определение

Итак, если речь идет о прогрессии арифметической или алгебраической (эти понятия определяют одно и то же), то это означает, что имеется некоторый числовой ряд, удовлетворяющий следующему закону: каждые два соседних числа в ряду отличаются на одно и то же значение. Математически это записывается так:

Здесь n означает номер элемента a n в последовательности, а число d - это разность прогрессии (ее название следует из представленной формулы).

О чем говорит знание разности d? О том, как "далеко" друг от друга отстоят соседние числа. Однако знание d является необходимым, но не достаточным условием для определения (восстановления) всей прогрессии. Необходимо знать еще одно число, которым может быть совершенно любой элемент рассматриваемого ряда, например, a 4 , a10, но, как правило, используют первое число, то есть a 1 .

Формулы для определения элементов прогрессии

В общем, информации выше уже достаточно, чтобы переходить к решению конкретных задач. Тем не менее до того, как будет дана прогрессия арифметическая, и найти разность ее будет необходимо, приведем пару полезных формул, облегчив тем самым последующий процесс решения задач.

Несложно показать, что любой элемент последовательности с номером n может быть найден следующим образом:

a n = a 1 + (n - 1) * d

Действительно, проверить эту формулу может каждый простым перебором: если подставить n = 1, то получится первый элемент, если подставить n = 2, тогда выражение выдает сумму первого числа и разности, и так далее.

Условия многих задач составляются таким образом, что по известной паре чисел, номера которых в последовательности также даны, необходимо восстановить весь числовой ряд (найти разность и первый элемент). Сейчас мы решим эту задачу в общем виде.

Итак, пусть даны два элемента с номерами n и m. Пользуясь полученной выше формулой, можно составить систему из двух уравнений:

a n = a 1 + (n - 1) * d;

a m = a 1 + (m - 1) * d

Для нахождения неизвестных величин воспользуемся известным простым приемом решения такой системы: вычтем попарно левую и правую части, равенство при этом останется справедливым. Имеем:

a n = a 1 + (n - 1) * d;

a n - a m = (n - 1) * d - (m - 1) * d = d * (n - m)

Таким образом, мы исключили одну неизвестную (a 1). Теперь можно записать окончательное выражение для определения d:

d = (a n - a m) / (n - m), где n > m

Мы получили очень простую формулу: чтобы вычислить разность d в соответствии с условиями задачи, необходимо лишь взять отношение разностей самих элементов и их порядковых номеров. Следует обратить на один важный момент внимание: разности берутся между "старшим" и "младшим" членами, то есть n > m ("старший" - имеется в виду стоящий дальше от начала последовательности, его абсолютное значение может быть как больше, так и меньше более "младшего" элемента).

Выражение для разности d прогрессии следует подставить в любое из уравнений в начале решения задачи, чтобы получить значение первого члена.

В наш век развития компьютерных технологий многие школьники стараются найти решения для своих заданий в Интернете, поэтому часто возникают вопросы такого типа: найти разность арифметической прогрессии онлайн. По подобному запросу поисковик выдаст ряд web-страниц, перейдя на которые, нужно будет ввести известные из условия данные (это могут быть как два члена прогрессии, так и сумма некоторого их числа) и моментально получить ответ. Тем не менее такой подход к решению задачи является непродуктивным в плане развития школьника и понимания сути поставленной перед ним задачи.

Решение без использования формул

Решим первую задачу, при этом не будем использовать никакие из приведенных формул. Пусть даны элементы ряда: а6 = 3, а9 = 18. Найти разность прогрессии арифметической.

Известные элементы стоят близко друг к другу в ряду. Сколько раз нужно добавить разность d к наименьшему, чтобы получить наибольшее из них? Три раза (первый раз добавив d, мы получим 7-й элемент, второй раз - восьмой, наконец, третий раз - девятый). Какое число нужно добавить к трем три раза, чтобы получить 18? Это число пять. Действительно:

Таким образом, неизвестная разность d = 5.

Конечно же, решение можно было выполнить с применением соответствующей формулы, но этого не было сделано намеренно. Подробное объяснение решения задачи должно стать понятным и ярким примером, что такое арифметическая прогрессия.

Задача, подобная предыдущей

Теперь решим похожую задачу, но изменим входные данные. Итак, следует найти если а3 = 2, а9 = 19.

Конечно, можно прибегнуть снова к методу решения "в лоб". Но поскольку даны элементы ряда, которые стоят относительно далеко друг от друга, такой метод станет не совсем удобным. А вот использование полученной формулы быстро приведет нас к ответу:

d = (а 9 - а 3) / (9 - 3) = (19 - 2) / (6) = 17 / 6 ≈ 2,83

Здесь мы округлили конечное число. Насколько это округление привело к ошибке, можно судить, проверив полученный результат:

a 9 = a 3 + 2,83 + 2,83 + 2,83 + 2,83 + 2,83 + 2,83 = 18,98

Этот результат отличается всего на 0,1 % от значения, данного в условии. Поэтому использованное округление до сотых можно считать успешным выбором.

Задачи на применение формулы для an члена

Рассмотрим классический пример задачи на определение неизвестной d: найти разность прогрессии арифметической, если а1 = 12, а5 = 40.

Когда даны два числа неизвестной алгебраической последовательности, причем одним из них является элемент a 1 , тогда не нужно долго думать, а следует сразу же применить формулу для a n члена. В данном случае имеем:

a 5 = a 1 + d * (5 - 1) => d = (a 5 - a 1) / 4 = (40 - 12) / 4 = 7

Мы получили точное число при делении, поэтому нет смысла проверять точность рассчитанного результата, как это было сделано в предыдущем пункте.

Решим еще одну аналогичную задачу: следует найти разность арифметической прогрессии, если а1 = 16, а8 = 37.

Используем аналогичный предыдущему подход и получаем:

a 8 = a 1 + d * (8 - 1) => d = (a 8 - a 1) / 7 = (37 - 16) / 7 = 3

Что еще следует знать о прогрессии арифметической

Помимо задач на нахождение неизвестной разности или отдельных элементов, часто необходимо решать проблемы суммы первых членов последовательности. Рассмотрение этих задач выходит за рамки темы статьи, тем не менее для полноты информации приведем общую формулу для суммы n чисел ряда:

∑ n i = 1 (a i) = n * (a 1 + a n) / 2

Задачи по арифметической прогрессии существовали уже в глубокой древности. Они появлялись и требовали решения, поскольку имели практическую необходимость.

Так, в одном из папирусов Древнего Египта, имеющем математическое содержание, - папирусе Райнда (XIX век до нашей эры) - содержится такая задача: раздели десять мер хлеба на десять человек, при условии если разность между каждым из них составляет одну восьмую меры».

И в математических трудах древних греков встречаются изящные теоремы, имеющие отношение к арифметической прогрессии. Так, Гипсикл Александрийский (II век составивший немало интересных задач и добавивший четырнадцатую книгу к «Началам» Евклида, сформулировал мысль: «В арифметической прогрессии, имеющей четное число членов, сумма членов 2-ой половины больше суммы членов 1-ой на квадрату 1/2 числа членов».

Обозначается последовательность an. Числа последовательности называются ее членами и обозначаются обычно буквами с индексами, которые указывают порядковый номер этого члена (a1, a2, a3 … читается: «a 1-ое», «a 2-ое», «a 3-тье» и так далее).

Последовательность может быть бесконечной или конечной.

А что же такое арифметическая прогрессия? Под ней понимают получаемую сложением предыдущего члена (n) с одним и тем же числом d, являющимся разностью прогрессии.

Если d<0, то мы имеем убывающую прогрессию. Если d>0, то такая прогрессия считается возрастающей.

Арифметическая прогрессия называется конечной, если учитываются только несколько ее первых членов. При очень большом количестве членов это уже бесконечная прогрессия.

Задается любая арифметическая прогрессия следующей формулой:

an =kn+b, при этом b и k - некоторые числа.

Абсолютно верно утверждение, являющееся обратным: если последовательность задается подобной формулой, то это точно арифметическая прогрессия, которая имеет свойства:

  1. Каждый член прогрессии - среднее арифметическое предыдущего члена и последующего.
  2. Обратное: если, начиная со 2-ого, каждый член - среднее арифметическое предыдущего члена и последующего, т.е. если выполняется условие, то данная последовательность - арифметическая прогрессия. Это равенство одновременно является и признаком прогрессии, поэтому его, как правило, называют характеристическим свойством прогрессии.
    Точно так же верна теорема, которая отражает это свойство: последовательность - арифметическая прогрессия только в том случае, если это равенство верно для любого из членов последовательности, начиная со 2-ого.

Характеристическое свойство для четырёх любых чисел арифметической прогрессии может быть выражено формулой an + am = ak + al, если n + m = k + l (m, n, k - числа прогрессии).

В арифметической прогрессии любой необходимый (N-й) член найти можно, применяя следующую формулу:

К примеру: первый член (a1) в арифметической прогрессии задан и равен трём, а разность (d) равняется четырём. Найти нужно сорок пятый член этой прогрессии. a45 = 1+4(45-1)=177

Формула an = ak + d(n - k) позволяет определить n-й член арифметической прогрессии через любой ее k-тый член при условии, если он известен.

Сумма членов арифметической прогрессии (подразумевается 1-ые n членов конечной прогрессии) вычисляется следующим образом:

Sn = (a1+an) n/2.

Если известны и 1-ый член, то для вычисления удобна другая формула:

Sn = ((2a1+d(n-1))/2)*n.

Сумма арифметической прогрессии, которая содержит n членов, подсчитывается таким образом:

Выбор формул для расчетов зависит от условий задач и исходных данных.

Натуральный ряд любых чисел, таких как 1,2,3,...,n,...- простейший пример арифметической прогрессии.

Помимо арифметической прогрессии существует еще и геометрическая, которая обладает своими свойствами и характеристиками.



Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.