Функциональная биохимия. Желчеобразовательная и экскреторная функция

ФУНКЦИОНАЛЬНАЯ БИОХИМИЯ

Для выполнения всех необходимых жизненных функций организм человека содержит более 200 типов специализированных клеток. Комплекс морфологически однотипных клеток, выполняющих определенные функции, называется тканью. Ткани морфологически оформляются в органы - образования с определенными функциями в сложной биологической системе, какой является организм.

Функциональная биохимия выясняет связи между строением химических соединений и процессами их взаимоизменения с одной стороны, и функцией субклеточных частиц, специализированных клеток, тканей или органов, включающих в свой состав упомянутые вещества - с другой.

Молекулярные дефекты приводят к биохимическим сдвигам, клинически проявляющимися как заболевания, при которых изменяются нормальные биохимические показатели, имеющие диагностическое значение. Знание основ биохимии естественных процессов жизнедеятельности отдельных органов необходимо медику для выявления нарушений химических процессов, с последующим их устранением или исправлением.

Биохимия печени

Печень - центральная биохимическая лаборатория организма, в которой протекают разнообразные метаболические превращения веществ. Она также включается во все процессы обмена, происходящие и в периферических тканях. Химический состав печени: вода - 70%, белки - 12-24, липиды – 2-6, углеводы - 2-8, холестерин- 0,3-0,5, железо - 0,02% и другие минеральные вещества. У взрослого здорового человека масса печени составляет в среднем 1- 1,5 кг. Клеточный состав печени:

1) гепатоциты - 80%, расположены в два слоя и контактируют с одной стороны с желчью, а с другой- с кровью;

2) эндотелиальные клетки-15%;

3) клетки соединительной ткани - 5%.

Особенность кровоснабжения печени состоит в том, что в ней по синусоидам (расширенным капиллярам) циркулирует смешанная кровь (венозно-артериальная). 70- 80% общего объема крови поступает в нее по воротной вене (венозная кровь) от кишечника, а вместе с этой кровью поступают и продукты расщепления белков, липидов, полисахаридов и нуклеиновых кислот: глюкоза, аминокислоты, азотистые основания, хиломикроны и др. 30% крови доставляет в печень печеночная артерия (артериальная кровь), а вместе с ней доставляются метаболиты периферических тканей и органов: аланин, лактат, глутамин, ЛВП (зрелые), глицерин, кислород в виде калиевой соли оксигемоглобина и др. Печеночная вена выносит из печени в общий кровоток глюкозу, аминокислоты, белки плазмы крови, ферменты, кетоновые тела, ЛОНП, ЛВП-предшественники, мочевину и ряд других веществ.

Функции печени многочисленны и сложны, но наиболее важные из них биосинтетическая, регуляторно-гомеостатическая, гемостатическая, мочевинообразовательная и желчеобразоватильная, выделительная, катаболическая, детоксикационная.

Важнейшей функцией печени является биосинтетическая. В печени синтезируются следующие вещества: кетоновые тела, глюкоза, холестерин, эфиры холестерина, белки плазмы, белки свертывающей и антисвертывающей систем, заменимые аминокислоты, ВЖК, ФЛ, ТАГ (2-й ресинтез), ЛОНП, ЛВП-предшественники, биологически активные пептиды, ферменты глюконеогенеза, ферменты орнитинового цикла, ЛХАТ, гем, холин, креатин.

Часть метаболитов, образовавшихся в печени (глюкоза, холестерин, кетоновые тела, белки плазмы и др.) транспортируются далее в клетки других органов и тканей (т.е. «на экспорт»), где используются для энергетических и структурных целей, а часть откладывается в запас (например, гликоген, железо, жирорастворимые витамины) или выделяются из организма в случае неиспользования. Одной из функций печени является выделительная. В просвет ЖКТ печень выделяет холестерин, желчные кислоты, желчные пигменты, железо, другие вещества. В поддержании постоянства внутренней среды организма (гомеостатическая функция) роль печени уникальная, так как она является центром регуляции основных путей метаболизма: белков, углеводов, липидов, нуклеиновых кислот и нуклеотидов, витаминов, воды и электролитов.

Особенности обмена аминокислот, белков и других азотсодержащих веществ в печени

Печень играет центральную роль в поддержании азотистого баланса в организме, так как регулирует процессы утилизации азотистых веществ и выделение их метаболитов из организма. В печени протекают основные анаболические и катаболические процессы аминокислот (переаминирование, дезаминирование, декарбоксилирование). Только в печени синтезируются белки свертывающей (протромбин, фибриноген, проконвертин, проакцелерин) и антисвертывающей системы (кроме плазминогена). Печень является единственным органом синтеза альбуминов, церулоплазмина, трансферрина, ангиотензиногена. Печень обеспечивает через кровь другие органы сбалансированной смесью незаменимых и заменимых аминокислот, необходимых для биосинтеза их собственных белков. В печени синтезируются многие азотсодержащие вещества небелковой природы (креатин, холин, мочевая кислота, индикан, гем и др.), биологически активные пептиды (глутатион, карнозин, анзерин), а также происходит биосинтез и распад пуриновых и пиримидиновых азотистых оснований. Только в печени происходит образование мочевины - основной путь обезвреживания аммиака в организме.

ФУНКЦИОНАЛЬНАЯ БИОХИМИЯ
Для выполнения всех необходимых жизненных функций организм человека содержит более 200 типов специализированных клеток. Комплекс морфологически однотипных клеток, выполняющих определенные функции, называется тканью. Ткани морфологически оформляются в органы - образования с определенными функциями в сложной биологической системе, какой является организм.

Функциональная биохимия выясняет связи между строением химических соединений и процессами их взаимоизменения с одной стороны , и функцией субклеточных частиц,специализированных клеток, тканей или органов, включающих в свой состав упомянутые вещества - с другой.

Молекулярные дефекты приводят к биохимическим сдвигам, клинически проявляющимися как заболевания, при которых изменяются нормальные биохимические показатели, имеющие диагностическое значение. Знание основ биохимии естественных процессов жизнедеятельности отдельных органов необходимо медику для выявления нарушений химических процессов, с последующим их устранением или исправлением.

БИОХИМИЯ ПЕЧЕНИ

Печень - центральная биохимическая лаборатория организма, в которой протекают разнообразные метаболические превращения веществ. Она также включается во все процессы обмена, происходящие и в периферических тканях. Химический состав печени: вода - 70%, белки - 12-24, липиды – 2-6, углеводы - 2-8, холестерин- 0,3-0,5, железо - 0,02% и другие минеральные вещества. У взрослого здорового человека масса печени составляет в среднем 1- 1,5 кг. Клеточный состав печени:

1) гепатоциты - 80%, расположены в два слоя и контактируют с одной стороны с желчью, а с другой- с кровью;

2) эндотелиальные клетки-15%;

3) клетки соединительной ткани - 5%.

Особенность кровоснабжения печени состоит в том, что в ней по синусоидам (расширенным капиллярам) циркулирует смешанная кровь (венозно-артериальная). 70- 80% общего объема крови поступает в нее по воротной вене (венозная кровь) от кишечника, а вместе с этой кровью поступают и продукты расщепления белков, липидов, полисахаридов и нуклеиновых кислот: глюкоза, аминокислоты, азотистые основания, хиломикроны и др. 30% крови доставляет в печень печеночная артерия (артериальная кровь), а вместе с ней доставляются метаболиты периферических тканей и органов: аланин, лактат, глутамин, ЛВП (зрелые), глицерин, кислород в виде калиевой соли оксигемоглобина и др. Печеночная вена выносит из печени в общий кровоток глюкозу, аминокислоты, белки плазмы крови , ферменты, кетоновые тела, ЛОНП, ЛВП-предшественники, мочевину и ряд других веществ.

Функции печени многочисленны и сложны, но наиболее важные из них биосинтетическая, регуляторно-гомеостатическая, гемостатическая, мочевинообразовательная и желчеобразоватильная, выделительная, катаболическая, детоксикационная.

Важнейшей функцией печени является биосинтетическая. В печени синтезируются следующие вещества: кетоновые тела, глюкоза, холестерин, эфиры холестерина, белки плазмы, белки свертывающей и антисвертывающей систем, заменимые аминокислоты, ВЖК, ФЛ, ТАГ (2-й ресинтез), ЛОНП, ЛВП-предшественники, биологически активные пептиды, ферменты глюконеогенеза, ферменты орнитинового цикла, ЛХАТ, гем, холин, креатин.

Часть метаболитов, образовавшихся в печени (глюкоза, холестерин, кетоновые тела, белки плазмы и др.) транспортируются далее в клетки других органов и тканей (т.е. «на экспорт»), где используются для энергетических и структурных целей, а часть откладывается в запас (например, гликоген, железо, жирорастворимые витамины) или выделяются из организма в случае неиспользования. Одной из функций печени является выделительная. В просвет ЖКТ печень выделяет холестерин, желчные кислоты, желчные пигменты, железо, другие вещества. В поддержании постоянства внутренней среды организма (гомеостатическая функция) роль печени уникальная, так как она является центром регуляции основных путей метаболизма: белков, углеводов, липидов, нуклеиновых кислот и нуклеотидов, витаминов, воды и электролитов.

Особенности обмена аминокислот, белков и других азотсодержащих веществ в печени

Печень играет центральную роль в поддержании азотистого баланса в организме, так как регулирует процессы утилизации азотистых веществ и выделение их метаболитов из организма. В печени протекают основные анаболические и катаболические процессы аминокислот (переаминирование, дезаминирование, декарбоксилирование). Только в печени синтезируются белки свертывающей (протромбин, фибриноген, проконвертин, проакцелерин) и антисвертывающей системы (кроме плазминогена). Печень , церулоплазмина, трансферрина, ангиотензиногена. Печень обеспечивает через кровь другие органы сбалансированной смесью незаменимых и заменимых аминокислот, необходимых для биосинтеза их собственных белков. В печени синтезируются многие азотсодержащие вещества небелковой природы (креатин, холин, мочевая кислота, индикан, гем и др.), биологически активные пептиды (глутатион, карнозин, анзерин), а также происходит биосинтез и распад пуриновых и пиримидиновых азотистых оснований. Только в печени происходит образование мочевины - основной путь обезвреживания аммиака в организме.

Особенности обмена углеводов в печени

В печени протекают следующие метаболические процессы обмена углеводов: биосинтез и распад гликогена, необходимый для поддержания постоянства концентрации глюкозы в крови: глюконеогенез, аэробный гликолиз, пентозофосфаткый путь, обмен фруктозы и галактозы, цикл Кори, превращение глюкозы в ВЖК, биосинтез гетерополисахаридов. Печень является основным органом, поставляющим свободную глюкозу в кровь, так как вгепатоцитах печени имеется фермент глюкозо-6-фосфатаза, расщепляющий глюкозо-6-фосфат до свободной глюкозы.

Особенности обмена липидов в печени

Обмен липидов в печени наиболее интенсивно протекает по следующим метаболическим путям:

1) β - окисление ВЖК;

2) распад ТАГ, ФЛ, ХС, ЛВП-зрелых;

3) биосинтез транспортных форм липидов (ЛОНП, ЛВП-предшественни-ков);

4) биосинтез специфических ВЖК, ТАГ, ФЛ, холестерина, эфиров холестерина, кетоновых тел (ацетил-КоА →CH 3 COCH 2 COOH и

CH 3 -CHOH-CH 2 COOH).

Печень участвует в поддержании постоянного уровня жирных кислот в крови, если их количество увеличивается, то печень поглощает их и превращает в ТАГ, ФЛ, ЭХС, ЛОНП. Уменьшение биосинтеза фосфолипидов, уменьшение образования ЛОНП привод к увеличению биосинтеза ТАГ и накоплению их в гепатоцитах, что сопровождается жировой дегенерацией печени. Кетоновые тела (ацетоацетат, ацетон, β - гидроксибутират) синтезируются только в гепатоцитах печени из ацетил-КоА в ходе так называемого β-гидрокси-β-метилглутарил-КоА пути. При голодании, при пониженном содержании углеводов в пище , сахарном диабете возрастает скорость синтеза кетоновых тел (кетогенез). Из печени кетоновые тела током крови переносятся в периферические ткани и органы (мышцы, почки, мозг и т. д.), где они превращаются в ацетил-КоА и в цикле лимонной кислоты и ЦПЭ дают энергию. Печень играет важную роль в обмене стероидов, в частности холестерина (ХС). Общий путь ХС в печени составляет:

1. ХС, синтезируемый заново в печени из ацетил-КоА (эндогенный ХС);

2. ХС, образующийся из эфиров холестерина;

3. ХС, поступающий с артериальной кровью в составе зрелых ЛВП;

4. ХС, образовавшийся из деградированных форм ХМ и ЛОНП.

В печени ХС (80%) расходится на образование первичных желчных кислот (холевой и хенодезоксихолевой), для построения биомембран гепатоцитов, на формирование ЛОНП и ЛВП-предшественников, синтез эфиров ХС.

Кроме многочисленных функций в промежуточном обмене, печень играет важную в пищеварении, так как в ней образуется желчь.

Желчь - это жидкий секрет желтовато-коричневого цвета, который состоит из воды (97%), свободных и коньюгированных желчных кислот и солей (1%), билирубина и ХС, минеральных солей, фосфолипидов, ВЖК.

Различают печеночную желчь и пузырную, в которой образуются простые мицеллы, состоящие из фосфолипидов, холестерина и желчных кислот (2,5: 1: 12,5). Нерастворимый в воде холестерин удерживается в желчи в растворенном состоянии благодаря присутствию в ней солей желчных кислот и фосфатидилхолина. При недостатке желчных кислот в желчи холестерин выпадает в осадок, способствуя образованию камней. При нарушении желчеобразования или оттока желчи нарушаются переваривание липидов в ЖКТ, что приводит к стеаторее.

Печень играет важную роль в детоксикации чужеродных веществ или ксенобиотиков. Это имеет существенное значение для сохранения жизни организма. Чужеродные вещества попадают в организм с пищей, через кожу или с вдыхаемым воздухом и могут быть продуктами хозяйственной деятельности человека, веществами бытовой химии , лекарственным препаратами, этанолом. В печени инактивируются и токсические метаболиты распада азотсодержащих веществ: билирубина, продуктов распада аминокислот, биогенных аминов, аммиака, гормонов.

Гидрофильные ксенобиотики выводятся с мочой. Для удаления гидрофобных в процессе эволюции выработались механизмы, представляющие собой две фазы детоксикации: модификация и конъюгация. Возможные модификации: гидроксилирование (RH→ROH), сульфоокисление (R-S-R′→R-SO-R′), окислительное дезаминирование (RNH 2 →R=O+NH 3) и т.д.

В печени наиболее активно микросомальное окисление (монооксигеназная система), отвечающее за обезвреживание ксенобиотиков (чужеродных веществ).

Гидроксилирование - чаще всего результат химической модификации токсичных веществ, происходящий в I - й фазе обезвреживания. Во II - фазе происходит реакция коньюгации, в результате обеих фаз образующиеся продукты, как правило, хорошо растворимы и легко удаляются из организма.

Основные ферменты, участвующие в окислительной системе: цитохром Р 450 -редуктаза – флавопротеин (кофермент ФАДН 2 или ФМНН 2), цитохром Р 450 , связывающий в активном центре липофильное вещество RH и молекулу кислорода. Один атом О 2 присоединяет 2ē и переходит в форму О 2- . Донором электронов и протонов является НАДФН+Н + , который окисляется цитохром – Р 450 – редуктазой, О 2- взаимодействует с протонами: О 2- +2Н + →Н 2 О. Второй атом молекулы кислорода включается в гидроксильную группу вещества RH с образованием R-OH, в роли конъюгантов могут выступать глицин (при обезвреживании бензойной кислоты с образованием гиппуровой кислоты) ФАФС – донор остатка серной кислоты, УДФ – глюкуронид – донор остатка глюкуроновой кислоты. Последние два конъюганта используются при обезвреживании собственных метаболитов (индол через индоксил конъюгируется с ФАФС, давая животный индикан), а также лекарственных препаратов (аспирин после гидролитического отщепления ацетата конъюгируется с УДФ – глюкуронидом, образуя гидрофильный салицилглюкуронид, выносимый из организма с мочой).

Некоторые ксенобиотики (полициклические ароматические углеводороды, ароматические амины, афлатоксины) подвергаясь в печени изменениям ферментами монооксигеназной системы, превращаются в канцерогены. Они могут повреждать ДНК генов, мутации в которых способствуют превращению нормальной клетки в опухолевую. Экспрессия таких онкогенов приводит к неконтролируемой пролиферации, т.е. к развитию опухоли.

Так, образовавшийся в результате гидроксилирования бензанитрацена, эпоксид, ковалентно связывает гуанин, разрывая водородные связи в паре Г≡Ц, чем нарушает взаимодействие ДНК с белками.

Нитрозамины, образующиеся из азотистой кислоты и вторичных аминов (HNO 2 +R 2 NH→R 2 N-N=O) превращают цитозин в урацил , Г≡Ц становится ГУ. В комплементарной цепи уже будет СА, которая в результате мутаций может превратиться в ИА и комплементарная ей пара будет АТ, т.е. полностью изменился кодовый смысл ДНК.

Печень играет важную роль и в обезвреживании билирубина, который образуется в клетках РЭС в результате распада гемоглобина, миоглобина, каталазы, цитохромов и других гемопротеинов. Образовавшийся при этом билирубин нерастворим в воде, переносится с кровью в виде комплекса с альбумином и называется «непрямым» билирубином. В печени 1/4 часть непрямого билирубина вступает в реакцию коньюгации с УДФ-глюкуроновой кислотой, образуя диглюкуронид билирубина, называемого «прямым» билирубином.

«Прямой» билирубин выводится из печени с желчью в тонкий кишечник, где происходит отщепление глюкуроновой кислоты под влиянием глюкуронидазы микробов кишечника с образованием свободного билирубина, который далее превращается с последующим образованием желчных пигментов: стеркобилиногена, стеркобилина, уробилиногена, уробилина. Показателем нарушения пигментного обмена в печени является содержание в крови «непрямого», «прямого» и общего билирубина. Повышение содержания билирубина в крови ведет к отложению его в тканях и вызывает желтухи различной этиологии. Основными причинами гипербилирубинемии являются: увеличение гемолиза эритроцитов, дефицит и дефект фермента глюкуронилтрансферазы, закупорка желчных протоков, нарушение равновесия между образованием и выведением билирубина, повреждение гепатоцитов (вирусами, токсическими гепатотропными веществами), гепатиты, цирроз печени и др.

В зависимости от причин гипербилирубинемии различают следующие основные виды желтухи: гемолитическую, паренхиматозную, обтурационную, наследственную, желтуху новорожденных и др.

Диагностическим тестом для определения происхождения желтухи являются следующие нормальные показатели:

1) «прямой» и «непрямой» билирубин в крови;

2) желчные пигменты в моче и кале.

1) в крови содержится общего билирубина от 8 до 20 мкмолъ/л, при этом 25% (

5 мкмоль/л) от общего билирубина приходится на «прямой» билирубин;

2) в моче - билирубина нет, уробилина - 1-4 мг/сутки;

3) в кале в сутки выделяется до 300 мг стеркобилина (окрашивает кал в коричневый цвет).

При гемолитической желтухе гипербилирубинемия возникает в основном вследствие усиленного гемолиза эритроцитов, в результате чего увеличивается:

1) в крови количество непрямого» (свободного) билирубина;

2) в моче количество уробилина (моча темная);

3) в кале количество стеркобилина (кал темный).

Кожа и слизистые окрашены в желтый цвет. При паренхиматозной (печеночно-клеточной) желтухе повреждаются клетки печени, вследствие чего увеличивается их проницаемость. Поэтому при паренхиматозной желтухе:

1) в крови увеличивается количество как «непрямого», так и «прямого» билирубина (желчь поступает прямо в кровь);

2) в моче уменьшается количество уробилина и обнаруживается «прямой» билирубин;

3) в кале уменьшается содержание стеркобилина.

При обтурационной (механической) желтухе нарушен отток желчи (закупорка общего желчного протока), что приводит:

1) в крови - к увеличению «прямого» билирубина;

2) в моче - к увеличению «прямого» билирубина и отсутствию уробилина;

3) в кале - к отсутствию желчных пигментов, кал обесцвечен.

Известно несколько заболеваний , при которых желтуха вызвана наследственными нарушениями метаболизма билирубина. Примерно у 5% населения диагностируют желтуху, вызванную генетическими нарушениями в структуре белков и ферментов, ответственных за захват непрямого билирубина в печень (синдром Жильбера), за его конъюгацию с глюкуроновой кислотой, обусловленной нарушением реакции глюкуронирования в печени (синдром Краглера-Найяра I и II типов), нарушением активного транспорта образованных в печени билирубинглюкуронидов в желчь (синдром Дабина-Ротора-Джонсона).

Дифференциальная диагностика наследственных желтух


Синдром

Дефект

Клинические проявления

Неконьюгированная гипербилируинемия

Криглера-Найяра-I-го типа* (врожденная негемолитическая желтуха)

Отсутствие активности, билирубин – УДФ - глюкуронилтрансферазы (не поддается лечению фенобарбиталом – индуктором гена УДФ-глюкуронилтрансферазы)

В крови о.б., н.б., к.б.↓, в моче у↓, к.б.↓, в кале с↓.

Криглера-Найяра-II-го типа

Нарушен синтез УДФ глюкуронилтрансферазы, катализирующей присоединение второй глюкуронильной группы (поддается лечению фенобарбиталом и фототерапией)

Жильбера

Гепатоциты не поглощают билирубин, снижена коньюгация

В крови о.б., н.б., к.б.N↓, в моче к.б.↓, у.↓, в кале с↓.

Коньюгированная гипербилирубинемия

Дабина-Ротора-Джонсона

Коньюгированный билирубин не поступает в желчь

В крови о.б., н.б., к.б., в моче к.б.↓, у↓, в кале с↓.

о.б. – общий билирубин,

н.б. – неконьюгированный билирубин,

к.б. -. коньюированный билирубин,

с – стеркобилин,

у – уробилин.

* - дети умирают в раннем возрасте из-за развития билирубиновой энцефалопатии.

Семейная гипербилирубинемия новорожденных связана с наличием конкурентных ингибиторов коньюгации билирубина (эстрогена, свободных жирных кислот) в материнском молоке. При грудном вскармливании эти ингибиторы приводят к гипербилирубинемии (транзиторная гипербилирубинемия), которая исчезает при переводе на искусственное вскармливание.

ЛАБОРАТОРНОЕ ЗАНЯТИЕ ПО БИОХИМИИ ПЕЧЕНИ

Цель занятия:

1. Знать основные функции печени, особенности путей обезвреживания ксенобиотиков и метаболитов в печени, образование и обезвреживание билирубина.

2. Уметь количественно определять концентрацию прямого и непрямого билирубина в сыворотке крови и желчных пигментов в моче для диагностики основных видов желтух.

3. Ознакомиться с видами наследственных желтух.

Принцип метода . Билирубин дает розовое окрашивание с диазореактивом Эрлиха. По интенсивности окрашивания судят о концентрации билирубина. Прямой билирубин (синонимы: билирубин-глюкуронид, коньюгированный билирубин, связанный билирубин) определяют цветной реакцией Эрлиха в отсутствии органических растворителей. Общий (прямой, непрямой) билирубин определяют в присутствии спирта, обеспечивающего взаимодействие всех форм билирубина с диазореактивом Эрлиха. Непрямой билирубин (синонимы: свободный билирубин , неконьюгированный билирубин) определяют по разнице между общим и прямым.

КУРСОВАЯ РАБОТА:

АНАЛИЗ БИОХИМИЧЕСКИХ ПОКАЗАТЕЛЕЙ РАБОТЫ ПЕЧЕНИ В НОРМЕ И ПАТОЛОГИИ

Cодержание

Введение

1.1.2 Регуляция липидного обмена

1.1.3 Регуляция обмена белков

1.2 Мочевинообразовательная функция

1.3 Желчеобразовательная и экскреторная функция

1.4 Биотрансформационная (обезвреживающая) функция

2. Заболевания печени и лабораторная диагностика заболеваний печени

2.1 Основы клинической лабораторной диагностики заболеваний печени

2.2 Основные клинико-лабораторные синдромы при поражениях печени

2.2.1 Синдром цитолиза

2.2.4 Синдром воспаления

2.2.5 Синдром шунтирования печени

Заключение

Биохимия печени включает как протекание нормальных обменных процессов, так и нарушения метаболизма веществ с развитием патологии. Изучение всех аспектов биохимии печени позволит видеть картину нормально функционирующего органа и его участие в работе всего организма и поддержании гомеостаза. Так же при нормальной работе печени осуществляется интеграция всех основных обменов в организме, причем удается наблюдать начальные этапы метаболизма (например, при первичном всасывании веществ из кишечника) и конечные этапы с последующим выведением продуктов обмена из организма.

При нарушениях работы печени происходит сдвиг метаболизма в определенную сторону, поэтому необходимо изучение патологических состояний органа для дальнейшей диагностики заболеваний. В настоящее время это особенно актуально, так как заболевания печени прогрессируют, а достаточно хороших методов лечения пока не существует. К таким заболеваниям в первую очередь относятся вирусные гепатиты, циррозы печени (часто при систематическом употреблении алкоголя и при прочих вредных внешних воздействиях, связанных с неблагоприятной экологией), сдвиги метаболизма при нерациональном питании, онкологические заболевания печени. Поэтому очень важна ранняя диагностика этих заболеваний, которая может основываться на биохимических показателях.

Целью курсовой работы является рассмотрение функций печени и сравнение биохимических показателей работы этого органа в норме и патологии; также указание основных принципов лабораторной диагностики, краткое описание синдромов гепатитов различной этиологии и приведение примеров.

1. Функциональная биохимия печени

Условно функции печени по биохимическим показателям можно разделить на: регуляторно-гомеостатическую функцию, включающую основные виды обмена (углеводный, липидный, белковый, обмен витаминов, водно-минеральный и пигментный обмены), мочевинообразовательную, желчеобразовательную и обезвреживающую функции. Такие основные функции и их регуляция подробно рассмотрены далее в этой главе.

1.1 Регуляторно-гомеостатическая функция печени

Печень - центральный орган химического гомеостаза, где чрезвычайно интенсивно протекают все обменные процессы и где они тесно переплетаются между собой.

1.1.1 Углеводный обмен в печени и его регуляция

Моносахариды (в частности глюкоза) поступают в печень по воротной вене и подвергаются различным преобразованиям. Например, при избыточном поступлении глюкозы из кишечника она депонируется в виде гликогена, так же глюкоза производится печенью в ходе гликогенолиза и глюконеогенеза, поступает в кровь и расходуется большинством тканей. Регуляция углеводного обмена осуществляется благодаря тому, что печень является практически единственным органом, который поддерживает постоянный уровень глюкозы в крови даже в условиях голодания.

Судьба моносахаридов различна в зависимости от природы, их содержания в общем кровотоке, потребностей организма. Часть их отправится в печёночную вену, чтобы поддержать гомеостаз, в первую очередь, глюкозы крови и обеспечить нужды органов. Концентрация глюкозы в крови определяется балансом скоростей ее поступления, с одной стороны, и потребления тканями с другой. В постабсорбтивном состоянии (постабсорбтивное состояние развивается через 1,5—2 часа после приема пищи, так же называется истинным или метаболическим насыщением . Типичным постабсорбтивным состоянием считают состояние утром до завтрака, после примерно десятичасового ночного перерыва в приеме пищи) и в норме концентрация глюкозы в крови равна 60-100 мг/дл (3,3-5,5 мольл). А остальную часть моносахаридов (в основном глюкозы) печень использует для собственных нужд.

В гепатоцитах интенсивно протекает метаболизм глюкозы. Поступившая с пищей глюкоза только в печени с помощью специфических ферментных систем преобразуются в глюкозо-6-фосфат (лишь в такой форме глюкоза используется клетками) . Фосфорилирование свободных моносахаридов - обязательная реакция на пути их использования, она приводит к образованию более реакционно-способных соединений и поэтому может рассматриваться как реакция активации. Галактоза и фруктоза, поступающие из кишечного тракта, при участии соответственно галактокиназы и фруктокиназы фосфорилируются по первому углеродному атому:

Глюкоза, поступающая в клетки печени, так же подвергается фосфорилированию с использованием АТФ. Эту реакцию катализирует ферменты гексокиназа и глюкокиназа.

печень патология диагностика заболевание

Гексокиназа обладает высоким сродством к глюкозе (К м

Наряду с другими механизмами это предотвращает черезмерное повышение концентрации глюкозы в периферической крови при пищеварении .

Образование глюкозо-6-фосфата в клетке - своеобразная «ловушка» для глюкозы, так как мембрана клетки непроницаема для фосфорилированной глюкозы (нет соответствующих транспортных белков). Кроме того, фосфорилирование уменьшает концентрацию свободной глюкозы в цитоплазме. В результате создаются благоприятные условия для облегченной диффузии глюкозы в клетки печени из крови.

Возможна и обратная реакция превращения глюкозо-6-фосфат в глюкозу при действии глюкозо-6-фосфатазы, которая катализирует отщепление фосфатной группы гидролитическим путем.

Образовавшаяся свободная глюкоза способна диффундировать из печени в кровь. В других органах и тканях (кроме почек и клеток кишечного эпителия) глюкозо-6-фосфатазы нет, и поэтому там проходит только фосфорилирование, без обратной реакции, и выход глюкозы из этих клеток невозможен .

Глюкозо-6-фосфат может превратиться в глюкозо-1-фосфат при участии фосфоглюкомутазы, которая катализирует обратимую реакцию.

Так же глюкозо-6-фосфат может использоваться в различных превращениях, основными из которых являются: синтез гликогена, катаболизм с образованием СО 2 и Н 2 О или лактата, синтез пентоз. Вместе с тем в процессе метаболизма глюкозо-6-фосфата образуются промежуточные продукты, используемые в дальнейшем для синтеза аминокислот, нуклеотидов, глицерина и жирных кислот. Таким образом, глюкозо-6-фосфат - не только субстрат для окисления, но и строительный материал для синтеза новых соединений (приложение 1).

Итак, рассмотрим окисление глюкозы и глюкозо-6-фосфата в печени. Этот процесс идет двумя путями: дихотомическим и апотомическим. Дихотомический путь это гликолиз, который включает «анаэробный гликолиз», завершающийся образованием молочной кислоты (лактата) или этанола и СО 2 и «аэробный гликолиз» - распад глюкозы, проходящий через образование глюкозо-6-фосфата, фруктозобисфосфата и пирувата как в отсутствие так и в присутствие кислорода (аэробный метаболизм пирувата выходит за рамки углеводного обмена, однако может рассматриваться как завершающая его стадия: окисление продукта гликолиза - пирувата).

Апотомический путь окисления глюкозы или пентозный цикл заключается в образовании пентоз и возвращению пентоз в гексозы в результате распадается одна молекула глюкозы и образуется СО 2 .

Гликолиз в анаэробных условиях - сложный ферментативный процесс распада глюкозы, протекающий без потребления кислорода. Конечным продуктом гликолиза является молочная кислота. В процессе гликолиза образуется АТФ.

Процесс гликолиза протекает в гиалоплазме (цитозоле) клетки и условно делится на одиннадцать этапов, которые соответственно катализируют одиннадцать ферментов:

  1. Фосфорилирование глюкозы и образование глюкозо-6-фосфата - перенос остатка ортофосфата на глюкозу за счет энергии АТФ. Катализатором является гексокиназа. Этот процесс был рассмотрен выше.
  1. Превращение глюкозо-6-фосфата под действием фермента глюкозо-6-фосфат-изомеразы во фруктозо-6-фосфат:
  2. Фруктозо-6-фосфат вновь фосфорилируется за счет второй молекулы АТФ, реакция катализируется фосфофруктокиназой:

Реакция необратима, протекает в присутствии ионов магния и является наиболее медленно текущей реакцией гликолиза.

  1. Под влиянием фермента альдолазы фруктозо-1,6-бифосфат расщепляется на две фосфотриозы:
  1. Реакция изомеризации триозофосфатов. Катализируеися ферментом триозофосфатизомеразой:
  1. Глицеральдегид-3-фосфат в присутствии фермента глицеральдегидфосфатдегидрогеназы, кофермента НАД и неорганического фосфата продвергается своеобразному окислению с образованием 1,3-бифосфоглицериновой кислоты и восстановленой формы НАД - НАД*Н 2:
  1. Реакция катализируется фосфоглицераткиназой, происходит передача фосфатной группы в положении 1 на АДФ с образованием АТФ и 3-фосфоглицериновой кислоты (3-фосфоглицерат):
  1. Внутримолекулярный перенос оставшейся фосфатной группы, и 3-фосфоглицериновая кислота превращается в 2-фосфорлицериновую кислоту (2-фосфоглицерат):

Реакция легкообратима и протекает в присутствии ионов магния.

9. Реакция катализируется ферментом енолазой, 2-фосфоглицериновая кислота в результате отщепления молекулы воды переходит в фосфоенолпировиноградную кислоту (фосфоенолпируват), а фосфатная связь в положении 2 становится макроэргической:

  1. Разрыв макроэргической связи и перенос фосфатного остатка от фосфоенолпирувата на АДФ. Кртализируется ферментом пируваткиназой:

11. Восстановление пировиноградной кислоты и образование молочной кислоты (лактата). Реакция протекает при участии фермента лактатдегидрогеназы и кофермента НАД*Н 2, образовавшегося в шестой ркакции:

Гликолиз в аэробных условиях . В этом процессе можно выделить три части:

1. специфические для глюкозы превращения, завершающиеся образованием пирувата (аэробный гликолиз);

2. общий путь катаболизма (окислительное декарбоксилирование пирувата и цитратный цикл);

3. митохондриальная цепь переноса электронов.

В результате этих процессов глюкоза в печени распадается до С0 2 и Н 2 0, а освобождающаяся энергия используется для синтеза АТФ (приложение 2).

К обмену углеводов в печени относятся только специфические для глюкозы превращения, где происходит распад глюкозы до пирувата, который можно разделить на два этапа:

1. От глюкозы до глицеральдегидфосфата. В реакциях происходит включение фосфатных остатков в гексозы и превращение гексозы в триозу (приложение 3). Реакции этого этапа катализируют следующие ферменты: гексокиназа или глюкокиназа (1); фосфоглюкоизомераза (2); фосфофруктокиназа (3); альдолаза фруктозо-1,6-бисфосфата (4); фосфотриозоизомераза (5)

2. От глицеральдегидфосфата до пирувата. Это реакции, связанные с синтезом АТФ. Этап завершается превращением каждой молекулы глюкозы в две молекулы глицеральдегидфосфата (приложение 4). В реакциях участвуют пять ферментов: дегидрогеназа глицеральдегидфосфата (6); фосфоглицераткиназа (7); фосфоглицеромутаза (8); енолаза (9); пируваткиназа (10).

Пентозофосфатный (фосфоглюконатный) путь превращения глюкозы обеспечивает клетку гидрированным НАДФ для восстановительных синтезов и пентозами для синтеза нуклеотидов. В пентозофосфатном пути можно выделить две части — окислительный и неокислительный пути.

  1. Окислительный путь включает две реакции дегидрирования, где акцептором водорода служит НАДФ (приложение 5). Во второй реакции одновременно происходит декарбоксилирование, углеродная цепь укорачивается на один атом углерода и получаются пентозы.
  2. Неокислительный путь значительно сложнее. Здесь нет реакций дегидрирования, он может служить только для полного распада пентоз (до С0 2 и Н 2 0) или для превращения пентоз в глюкозу (приложение 6). Исходными веществами являются пять молекул фруктозо-6-фосфата, в сумме содержащие 30 углеродных атомов, конечный продукт реакции — шесть молекул рибозо-5-фосфата, в сумме также содержащие 30 углеродных атомов.

Окислительный путь образования пентоз и путь возращения пентоз в гексозы вместе составляют циклический процесс:

В этом цикле за один оборот полностью распадается одна молекула глюкозы, все шесть углеродных атомов которой превращаются в С0 2 .

Так же в печени идет обратный гликолизу процесс - глюконеогенез. Глюконеогенез — процесс синтеза глюкозы из веществ неуглеводной природы. Его основной функцией является поддержание уровня глюкозы в крови в период длительного голодания и интенсивных физических нагрузок. Глюконеогенез обеспечивает синтез 80-100 г глюкозы в сутки. Первичные субстраты глюконеогенеза — лактат, аминокислоты и глицерол. Включение этих субстратов в глюконеогенез зависит от физиологического состояния организма. Лактат — продукт анаэробного гликолиза. Он образуется при любых состояниях организма в эритроцитах и работающих мышцах. Таким образом, лактат используется в глюконеогенезе постоянно. Глицерол высвобождается при гидролизе жиров в жировой ткани в период голодания или при длительной физической нагрузке. Аминокислоты образуются в результате распада мышечных белков и включаются в глюконеогенез при длительном голодании или продолжительной мышечной работе. Необходимо отметить, что гликолиз протекает в цитозоле, а часть реакций глюконеогенеза происходит в митохондриях .

Глюконеогенез в основном протекает по тому же пути, что и гликолиз, но в обратном направлении (приложение 7). Однако три реакции гликолиза необратимы, и на этих стадиях реакции глюконеогенеза отличаются от реакций гликолиза.

Превращение пирувата в фосфоенолпируват (необратимая стадия I) осуществляется при участии двух ферментов: пируваткарбоксилазы и карбоксикиназы фосфоенолпирувата:

Две другие необратимые стадии катализируются фосфатазой фруктозо-1,6-бисфосфата и фосфатазой глюкозо-6-фосфата:

Каждая из необратимых реакций гликолиза вместе с соответствующей ей реакцией глюконеогенеза образует субстратный цикл (приложение 7, реакции 1, 2, 3).

Синтез глюкозы (глюконеогенез из аминокислот и глицерина) . Глюкоза в печени может синтезироваться из аминокислот и глицерина. При катаболизме аминокислот в качестве промежуточных продуктов образуются пируват или оксалоацетат, которые могут включаться в путь глюконеогенеза на стадии первого субстратного цикла (приложение 7, реакция 1). Глицерин образуется при гидролизе жиров и может превращаться в глюкозу (приложение 8). Аминокислоты и глицерин используются для синтеза глюкозы главным образом при голодании или при низком содержании углеводов в рационе (углеводное голодание).

Глюконеогенез может так же происходить из лактата. Молочная кислота не является конечным продуктом обмена, но ее образование — это тупиковый путь метаболизма: единственный способ использования молочной кислоты связан с ее превращением вновь в пируват при участии той же лактатдегидрогеназы:

Из клеток, в которых происходит гликолиз, образующаяся молочная кислота поступает в кровь и улавливается в основном печенью, где и превращается в пируват. Пируват в печени частично окисляется, частично превращается в глюкозу — цикл Кори, или глюкозолактатпый цикл:

В организме взрослого человека за сутки может синтезироваться около 80 г глюкозы, главным образом в печени. Биологическое значение глюконеогенеза заключается не только в возвращении лактата в метаболический фонд углеводов, но и в обеспечении глюкозой мозга при недостатке углеводов в организме, например, при углеводном или полном голодании .

Синтез гликогена (гликогенез) . Как уже говорилось выше, часть глюкозы поступившей в печень используется в синтезе гликогена. Гликоген — разветвленный гомополимер глюкозы, в котором остатки глюкозы соединены в линейных участках a-1,4-гликозидной связью. В точках ветвления мономеры соединены a-1,6-гликозидными связями. Эти связи образуются примерно с каждым десятым остатком глюкозы. Так возникает древообразная структура с молекулярной массой >10 7 Д, что соответствует приблизительно 50 000 остатков глюкозы (приложение 9). При полимеризации глюкозы снижается растворимость образующейся молекулы гликогена и, следовательно, ее влияние на осмотическое давление в клетке. Это обстоятельство объясняет, почему в клетке депонируется гликоген, а не свободная глюкоза.

Гликоген хранится в цитозоле клетки в форме гранул диаметром 10—40 нм. После приёма пищи, богатой углеводами, запас гликогена в печени может составлять примерно 5% от её массы.

Распад гликогена печени служит в основном для поддержания уровня глюкозы в крови в постабсорбтивном периоде. Поэтому содержание гликогена в печени изменяется в зависимости от ритма питания. При длительном голодании оно снижается почти до нуля.

Гликоген синтезируется в период пищеварения (через 1—2 ч после приёма углеводной пищи). Синтез гликогена из глюкозы требует затрат энергии.

Прежде всего глюкоза подвергается фосфорилированию при участии фермента гексокиназы и глюкокиназы. Далее глюкозо-6-фосфат под влиянием фермента фосфоглюкомутазы переходит в глюкозо-1-фосфат.

Образовавшийся глюкозо-1-фосфат уже непосредственно вовлекается в синтез гликогена.

На первой стадии синтеза глюкозо-1-фосфат вступает во взаимодействие с УТФ (уридинтрифосфат), образуя уридиндифосфатглюкозу (УДФ-глюкоза) и пирофосфат. Данная реакция катализируется ферментом глюкозо-1-фосфат-уридилилтрансферазой (УДФГ-пирофосфорилаза) (приложение 10).

На второй стадии — стадии образования гликогена — происходит перенос глюкозного остатка, входящего в состав УДФ-глюкозы, на глюкозидную цепь гликогена («затравочное» количество) (приложение 11). При этом образуется б-1,4-гликозидная связь между первым атомом углерода добавляемого остатка глюкозы и 4-гидроксильной группой остатка глюкозы цепи. Эта реакция катализируется ферментом гликогенсинтазой. Образующийся УДФ затем вновь фосфорилируется в УТФ за счет АТФ, и таким образом весь цикл превращений глюкозо-1-фосфата начинается сначала.

Установлено, что гликогенсинтаза неспособна катализировать образование б-1,6-гликозидную связь, имеющуюся в точках ветвления гликогена. Этот процесс катализирует специальный фермент, получивший название гликогенветвящего фермента, или амило-1,4-1,6-трансглюкозидазы. Последний катализирует перенос концевого олигосахаридного фрагмента, состоящего из 6 или 7 остатков глюкозы, с нередуцирующего конца одной из боковых цепей, насчитывающей не менее 11 остатков, на 6-гидроксиль-ную группу остатка глюкозы той же или другой цепи гликогена. В результате образуется новая боковая цепь. Ветвление увеличивает скорость синтеза и расщепления гликогена .

Распад гликогена или его мобилизация происходят в ответ на повышение потребности организма в глюкозе. Гликоген печени распадается в основном в интервалах между приёмами пищи, распад ускоряется во время физической работы. Распад гликогена происходит при участии двух ферментов: гликогенфосфорилазы и фермента с двойной специфичностью — 4:4-трансферазы-б-1,6-гликозидазы. Гликогенфосфорилаза катализирует фосфоролиз 1,4-гликозидной связи нередуцирующих концов гликогена, глюкозные остатки отщепляются один за другим в форме глюкозо-1-фосфата (приложение 12). При этом гликогенфосфорилаза не может отщеплять глюкозные остатки от коротких ветвей, содержащих менее пяти глюкозных остатков; такие ветви удаляются 4:4-трансферазой-б-1,6-гликозидазой. Этот фермент катализирует перенос фрагмента из трех остатков короткой ветви на концевой глюкозный остаток более длинной ветви; кроме того, он гидролизует 1,6-гликозидную связь и таким образом удаляет последний остаток ветви (приложение 13).

Голодание в течение 24 ч приводит практически к полному исчезновению гликогена в клетках печени. Однако при ритмичном питании каждая молекула гликогена может существовать неопределенно долго: при отсутствии пищеварения и поступления в ткани глюкозы молекулы гликогена уменьшаются за счет расщепления периферических ветвей, а после очередного приема пищи вновь вырастают до прежних размеров.

Глюкозо-1-фосфат, образующийся из гликогена, при участии фосфоглюкомутазы превращается в глюкозо-6-фосфат, дальнейшая судьба которого в печени и в мышцах различна. В печени глюкозо-6-фосфат превращается в глюкозу при участии глюкозо-6-фосфатазы, глюкоза выходит в кровь и используется в других органах и тканях.

Регуляция процессов гликогенеза и гликогенолиза осуществляется гормонами: инсулином, глюкагоном, адреналином. Первичный сигнал для синтеза инсулина и глюкагона — изменение концентрации глюкозы в крови. Инсулин и глюкагон постоянно присутствуют в крови, но при смене абсорбтивного периода на постабсорбтивный изменяется их относительная концентрация, что является главным фактором, переключающим метаболизм гликогена в печени. Отношение концентрации инсулина в крови к концентрации глюкагона называют «инсулин-глюкагоновый индекс». В постабсорбтивном периоде инсулин-глюкагоновый индекс снижается, и решающее значение в регуляции концентрации глюкозы и крови приобретает концентрация глюкагона. В период пищеварения преобладает влияние инсулина, так как инсулин-глюкагоновый индекс в этом случае повышается. В целом инсулин влияет на обмен гликогена противоположно глюкагону. Инсулин снижает концентрацию глюкозы в крови в период пищеварения.

Гормон адреналин стимулирует выведение глюкозы из печени в кровь, для того чтобы снабдить ткани (в основном мозг и мышцы) «топливом» в экстремальной ситуации.

Регуляторным фактором в метаболизме гликогена является также величина К м глюкокиназы, которая много выше, чем К м гексокиназы - печень не должна потреблять глюкозу для синтеза гликогена, если её количество в крови в пределах нормы.

Липидный обмен в печени включает биосинтез различных липидов (холестерина, триацилглицерина, фосфоглицеридов, сфингомиелина и др.) которые поступают в кровь и распределяются по другим тканям и сгорание (окисление) жирных кислот с образованием кетоновых тел, которые используются как источник энергии для внепеченочных тканей.

Доставка жирных кислот к месту окисления - к митохондриям клеток печени - происходит сложным путем: при участии альбумина осуществляется транспорт жирных кислот в клетку; при участии специальных белков - транспорт в пределах цитозоля; при участии карнитина - транспорт жирной кислоты из цитозоля в митохондрии.

Процесс окисления жирных кислот складывается из следующих основных этапов.

  1. Активация жирных кислот. Активация протекает на наружной поверхности мембраны митохондрии при участии АТФ, коэнзима А (HS-KoA) и ионов Mg 2+ . Реакция катализируется ферментом ацил-КоА-синтетазой:

Активация протекает в 2 этапа. Сначала жирная кислота реагирует с АТФ с образованием ациладенилата, далее сульфгидрильная группа КоА действует на прочно связанный с ферментом ациладенилат с образованием ацил-КоА и АМФ.

Затем следует транспорт жирных кислот внутрь митохондрий. Переносчиком активированных жирных кислот с длинной цепью через внутреннюю митохондриальную мембрану служит карнитин. Ацильная группа переносится с атома серы КоА на гидроксильную группу карнитина.

2. Образуется ацилкарнитин, который диффундирует через внутреннюю митохондриальную мембрану:

Реакция протекает при участии спецефического цитоплазматического фермента карнитин-ацилтрансферазы. После прохождения ацилкарнитина через мембрану митохондрий происходит обратная реакция - расщепление ацилкарнитина при участии HS-KoA и митохондриальной карнитин-ацилтрансферазы:

3. Внутримитохондриальное окисление жирных кислот. Процесс окисления жирной кислоты в митохондриях клетки включает несколько последовательных реакций.

Первая стадия дегидрирования. Ацил-КоА в митохондриях подвергается ферментативному дегидрированию, при этом ацил-КоА теряет 2 атома водорода в б- и в-положениях, превращаясь в КоА-эфир ненасыщенной кислоты. Реакцию катализирует ацил-КоА-дегидрогеназа, продуктом является еноил-КоА:

Стадия гидратации. Ненасыщенный ацил-КоА (еноил-КоА) при участии фермента еноил-КоА-гидратазы присоединяет молекулу воды. В результате образуется в-оксиацил-КоА (или 3-гидроксиацил-КоА):

Вторая стадия дегидрирования. Образовавшийся в-оксиацил-КоА (3-гидроксиацил-КоА) затем дегидрируется. Эту реакцию катализируют НАД-зависимые дегидрогеназы:

Тиолазная реакция. Расщепление 3-оксоацил-КоА с помощью тиоловой группы второй молекулы КоА. В результате образуется укороченный на два углеродных атома ацил-КоА и двууглеродный фрагмент в виде ацетил-КоА. Данная реакция катализируется ацетил-КоА-ацилтрансферазой (в-ке-тотиолазой):

Образовавшийся ацетил-КоА подвергается окислению в цикле трикарбоновых кислот, а ацил-КоА, укоротившийся на два углеродных атома, снова многократно проходит весь путь в-окисления вплоть до образования бутирил-КоА (4-углеродное соединение), который в свою очередь окисляется до 2 молекул ацетил-КоА .

Биосинтез жирных кислот . Синтез жирных кислот протекает в цитоплазме клетки. В митохондриях в основном происходит удлинение существующих цепей жирных кислот. Установлено, что в цитоплазме печеночных клеток синтезируется пальмитиновая кислота (16 углеродных атомов), а в митохондриях этих клеток из этой пальмитиновой кислоты или из жирных кислот экзогенного происхождения, т.е. поступающих из кишечника, образуются жирные кислоты, содержащие 18, 20 и 22 углеродных атома.

Митохондриальная система биосинтеза жирных кислот, включает несколько модифицированную последовательность реакций в-окисления, и осуществляет только удлинение существующих в организме среднецепочечных жирных кислот, в то время как полный биосинтез пальмитиновой кислоты из ацетил-КоА активно протекает в цитозоле, т.е. вне митохондрий, по совершенно другому пути.

Внемитохондриальная система биосинтеза жирных кислот (липогенез) находится в растворимой (цитозольной) фракции клеток печени. Биосинтез жирных кислот протекает с участием НАДФН, АТФ, Мn2+ и НСО3- (в качестве источника СО2); субстратом является ацетил-КоА, конечным продуктом - пальмитиновая кислота.

Образование ненасыщенных жирных кислот . Элонгация жирных кислот .

Две наиболее распространенные мононенасыщенные жирные кислоты - пальмитоолеиновая и олеиновая - синтезируются из пальмитиновой и стеариновой кислот. Эти превращения протекают в микросомах клеток печени. Превращению подвергаются только активированные формы пальмитиновой и стеариновой кислот. Ферменты, участвующие в этих превращениях, получили название десатураз. Наряду с десатурацией жирных кислот (образование двойных связей) в микросомах происходит и их удлинение (элонгация), причем оба эти процесса могут сочетаться и повторяться. Удлинение цепи жирной кислоты происходит путем последовательного присоединения к соответствующему ацил-КоА двууглеродных фрагментов при участии малонил-КоА и НАДФН. Ферментная система, катализирующая удлинение жирных кислот, получила название элонгазы. Пути превращения пальмитиновой кислоты в реакциях десатурации и элонгации представлены в приложении 14.

Биосинтез триглицеридов . Синтез триглицеридов происходит из глицерина и жирных кислот (главным образом стеариновой, пальмитиновой и олеиновой). Первый путь биосинтеза триглицеридов в печени протекает через образование б-глицерофосфата (глицерол-3-фосфата) как промежуточного соединения, глицерин фосфорилируется за счет АТФ с образованием глицерол-3-фосфата:

Второй путь в основном связан с процессами гликолиза и гликогенолиза. Известно, что в процессе гликолитического распада глюкозы образуется дигидроксиацетонфосфат, который в присутствии цитоплазматической глицерол-3-фосфатдегидрогеназы способен превращаться в глицерол-3-фосфат:

Образовавшийся тем или иным путем глицерол-3-фосфат последовательно ацилируется двумя молекулами КоА-производного жирной кислоты. В результате образуется фосфатидная кислота (фосфатидат):

Ацилирование глицерол-3-фосфата протекает последовательно, т.е. в 2 этапа. Сначала глицерол-3-фосфат-ацилтрансфераза катализирует образование лизофосфатидата. Далее фосфатидная кислота гидролизуется фосфатидат-фосфогидролазой до 1,2-диглицерида (1,2-диацилглицерола):

Затем 1,2-диглицерид ацилируется третьей молекулой ацил-КоА и превращается в триглицерид (триацилглицерол). Эта реакция катализируется диацилглицерол-ацилтрансферазой:

Установлено, что большинство ферментов, участвующих в биосинтезе триглицеридов, находятся в эндоплазматическом ретикулуме, и только некоторые, например глицерол-3-фосфат-ацилтрансфераза,- в митохондриях.

Метаболизм фосфолипидов . Фосфолипиды играют важную роль в структуре и функции клеточных мембран, активации мембранных и лизосомальных ферментов, в проведении нервных импульсов, свертывании крови, иммунологических реакциях, процессах клеточной пролиферации и регенерации тканей, в переносе электронов в цепи дыхательных ферментов. Особая роль фосфолипидам отводится в формировании липопротеидных комплексов. Наиболее важные фосфолипиды синтезируются главным образом в эндоплазматической сети клетки.

Центральную роль в биосинтезе фосфолипидов играют 1,2-диглицериды (в синтезе фосфатидилхолинов и фосфатидилэтаноламинов), фосфатидная кислота (в синтезе фосфатидилинозитов) и сфингозин (в синтезе сфингомиелинов). Цитидинтрифосфат (ЦТФ) участвует в синтезе практически всех фосфолипидов.

Биосинтез холестерина . В синтезе холестерина можно выделить три основные стадии: I - превращение активного ацетата в мевалоновую кислоту, II - образование сквалена из мевалоновой кислоты, III - циклизация сквалена в холестерин.

Рассмотрим стадию превращения активного ацетата в мевалоновую кислоту. Начальным этапом синтеза мевалоновой кислоты из ацетил-КоА является образование ацетоацетил-КоА посредством обратимой тиолазной реакции. Затем при последующей конденсации ацетоацетил-КоА с 3-й молекулой ацетил-КоА при участии гидроксиметилглутарил-КоА-синтазы (ГМГ-КоА-синтаза) образуется в-гидрокси-в-метилглутарил-КоА. Далее в-гидрокси-в-метилглутарил-КоА под действием регуляторного фермента НАДФ-зависимой гидроксиметилглутарил-КоА-редуктазы (ГМГ-КоА-редуктаза) в результате восстановления одной из карбоксильных групп и отщепления HS-KoA превращается в мевалоновую кислоту.

Наряду с классическим путем биосинтеза мевалоновой кислоты имеется второй путь, в котором в качестве промежуточного субстрата образуется в-гидрокси-в-метилглутарил-S-АПБ. Реакции этого пути идентичны начальным стадиям биосинтеза жирных кислот вплоть до образования ацетоацетил-S-АПБ. В образовании мевалоновой кислоты по этому пути принимает участие ацетил-КоА-карбоксилаза - фермент, осуществляющий превращение ацетил-КоА в малонил-КоА.

На II стадии синтеза холестерина мевалоновая кислота превращается в сквален. Реакции II стадии начинаются с фосфорилирования мевалоновой кислоты с помощью АТФ. В результате образуется 5-фосфорный эфир, а затем 5-пирофосфорный эфир мевалоновой кислоты 5-пирофосфомевалоновая кислота в результате последующего фосфорилирования третичной гидроксильной группы образует нестабильный промежуточный продукт - 3-фосфо-5-пирофосфомевалоновую кислоту, которая, декарбоксилируясь и теряя остаток фосфорной кислоты, превращается в изопентенилпирофосфат. Последний изомеризуется в диметил-аллилпирофосфат. Затем оба изомерных изопентенилпирофосфата (диметилаллилпирофосфат и изопентенилпирофосфат) конденсируются с высвобождением пирофосфата и образованием геранилпирофосфата. К геранилпирофосфату вновь присоединяется изопентенилпирофосфат. В результате этой реакции образуется фарнезилпирофосфат. В заключительной реакции данной стадии в результате НАДФН-зависимой восстановительной конденсации 2 молекул фарнезилпирофосфата образуется сквален.

На III стадии биосинтеза холестерина сквален под влиянием сквален-оксидоциклазы циклизируется с образованием ланостерина. Дальнейший процесс превращения ланостерина в холестерин включает ряд реакций, сопровождающихся удалением трех метильных групп, насыщением двойной связи в боковой цепи и перемещением двойной связи.

Общая схема синтеза холестерина представлена в приложении 15.

Метаболизм кетоновых тел . Под термином кетоновые (ацетоновые) тела подразумевают ацетоуксусную кислоту (ацетоацетат) СН3СОСН2СООН, в-оксимасляную кислоту (в-оксибутират, или D-3-гидроксибутират) СН3СНОНСН2СООН и ацетон СН3СОСН3.

Образование кетоновых тел происходит в несколько этапов (приложение 16). На первом этапе из 2 молекул ацетил-КоА образуется ацетоацетил-КоА. Реакция катализируется ферментом ацетил-КоА-ацетилтрансферазой (3-кетотиолазой). Затем ацетоацетил-КоА взаимодействует еще с одной молекулой ацетил-КоА. Реакция протекает под влиянием фермента гидроксиметилглутарил-КоА-синтетазы. Образовавшийся в-окси-в-метилглутарил-КоА способен под действием гидроксиметилглутарил-КоА-лиазы расщепляться на ацетоацетат и ацетил-КоА. Ацетоацетат восстанавливается при участии НАД-зависимой D-3-гидроксибутиратдегидрогеназы, при этом образуется D-в-оксимасляная кислота (D-3-гидроксибутират).

Существует второй путь синтеза кетоновых тел. Образовавшийся путем конденсации 2 молекул ацетил-КоА ацетоацетил-КоА способен отщеплять коэнзим А и превращаться в ацетоацетат. Этот процесс катализируется ферментом ацетоацетил-КоА-гидролазой (деацилазой). Однако второй путь образования ацетоуксусной кислоты (ацетоацетата) не имеет существенного значения, так как активность деацилазы в печени низкая.

В крови здорового человека кетоновые тела содержатся лишь в очень небольших концентрациях (в сыворотке крови 0,03-0,2 ммоль/л). Следует подчеркнуть важную роль кетоновых тел в поддержании энергетического баланса. Кетоновые тела - поставщики топлива для мышц, почек и действуют, возможно, как часть регуляторного механизма с обратной связью, предотвращая чрезвычайную мобилизацию жирных кислот из жировых депо. Печень в этом смысле является исключением, она не использует кетоновые тела в качестве энергетического материала. Из митохондрий печени эти соединения диффундируют в кровь и переносятся к периферическим тканям.

Печень является центральным местом обмена ВЖК. Сюда они поступают из кишечника, жировых депо в составе альбуминов плазмы крови .

Регуляция синтеза и распада жиров в печени . В клетках печени есть активные ферментные системы и синтеза, и распада жиров. Регуляция обмена жиров в значительной мере определяется регуляцией обмена жирных кислот, но не исчерпывается этими механизмами. Синтез жирных кислот и жиров активируется при пищеварении, а их распад — в постабсорбтивном состоянии и при голодании. Кроме того, скорость использования жиров пропорциональна интенсивности мышечной работы. Регуляция обмена жиров тесно сопряжена с регуляцией обмена глюкозы. Как и в случае обмена глюкозы, в регуляции обмена жиров важную роль играют гормоны инсулин, глюкагон, адреналин и процессы переключения фосфорилирования-дефосфорилирования белков.

Регуляция обмена белков в печени осуществляется благодаря интенсивному биосинтезу в ней белков и окислению аминокислот. За сутки в организме человека образуется около 80—100 г белка, из них половина в печени. При голодании печень быстрее всех расходует свои резервные белки для снабжения аминокислотами других тканей. Потери белка в печени составляют примерно 20%; в то время как в других органах не более 4%. Белки самой печени в норме обновляются полностью каждые 20 суток. Большинство синтезированных белков печень отправляет в плазму крови. При потребности (например, при полном или белковом голодании) эти протеины так же служат источниками необходимых аминокислот.

Поступив через воротную вену в печень, аминокислоты подвергаются ряду превращений, так же значительная часть аминокислот разносится кровью по всему организму и используется для физиологических целей. Печень обеспечивает баланс свободных аминокислот организма путем синтеза заменимых аминокислот и перераспределения азота. Всосавшиеся аминокислоты в первую очередь используются в качестве строительного материала для синтеза специфических тканевых белков, ферментов, гормонов и других биологически активных соединений. Некоторое количество аминокислот подвергается распаду с образованием конечных продуктов белкового обмена (СО2, Н2О и NH3) и освобождением энергии.

Все альбумины, 75-90% б-глобулинов (б 1 -антитрипсин, б 2 -макроглобулин - ингибиторы протеаз, белки острой фазы воспаления), 50% в-глобулинов плазмы синтезируются гепатоцитами. В печени происходит синтез белковых факторов свертывания крови (протромбина, фибриногена, проконвертина, акцелератора глобулина, фактора Кристмаса, фактора Стюарта-Прауэра) и часть естественных основных антикоагулянтов (антитромбин, протеин С и др.). Гепатоциты участвуют в образовании некоторых ингибиторов фибринолиза, регуляторы эритропоэза - эритропоэтины - образуются в печени. Гликопротеин гаптоглобин, вступающий в комплекс с гемоглобином для предупреждения его выделения почками, тоже имеет печёночное происхождение. Данное соединение принадлежит к белкам острой фазы воспаления, обладает пероксидазной активностью. Церулоплазмин, также являющийся гликопротеином, синтезируемым печенью, можно считать внеклеточной супероксиддисмутазой, что позволяет защищать мембраны клеток; мало того, он стимулирует продукцию антител. Подобным действием, только на клеточный иммунитет, обладает трансферрин, полимеризация которого так же осуществляется гепатоцитами.

Ещё один углеводсодержащий белок, но с иммуносупрессивными свойствами, способен синтезироваться печенью - б-фетопротеин, рост концентрации которого в плазме крови служит ценным маркёром некоторых опухолей печени, яичек и яичников. Печень - источник большей части протеинов системы комплемента.

В печени наиболее активно протекает обмен мономеров белков - аминокислот: синтез заменимых аминокислот, синтез небелковых азотистых соединений из аминокислот (креатина, глутатиона, никотиновой кислоты, пуринов и пиримидинов, порфиринов, дипептидов, коферментов пантотената и др.), окисление аминокислот с образованием аммиака, который обезвреживается в печени при синтезе мочевины .

Итак, рассмотрим общие пути обмена аминокислот . Общие пути превращения аминокислот в печени включают реакции дезаминирования, трансаминирования, декарбоксилирования и биосинтез аминокислот.

Дезаминирование аминокислот. Доказано существование 4 типов дезаминирования аминокислот (отщепление аминогруппы) (приложение 17). Выделены соответствующие ферментные системы, катализирующие эти реакции, и идентифицированы продукты реакции. Во всех случаях NH 2 -группа аминокислоты освобождается в виде аммиака. Помимо аммиака, продуктами дезаминирования являются жирные кислоты, оксикислоты и кетокислоты.

Трансаминирование аминокислот. Под трансаминированием подразумевают реакции межмолекулярного переноса аминогруппы (NH2—) от аминокислоты на б-кетокислоту без промежуточного образования аммиака. Реакции трансаминирования являются обратимыми и протекают при участии специфических ферментов аминотрансфераз, или трансаминаз.

Пример реакции трансаминирования:

Декарбоксилирование аминокислот. Процесс отщепления карбоксильной группы аминокислот в виде СО 2 . Образующиеся продукты реакции - биогенные амины. Реакции декарбоксилирования в отличие от других процессов промежуточного обмена аминокислот являются необратимыми. Они катализируются специфическими ферментами - декарбоксилазами аминокислот.

Обезвреживание аммиака в организме . В организме человека подвергается распаду около 70 г аминокислот в сутки, при этом в результате реакций дезаминирования и окисления биогенных аминов освобождается большое количество аммиака, являющегося высокотоксичным соединением. Поэтому концентрация аммиака в организме должна сохраняться на низком уровне. Уровень аммиака в крови в норме не превышает 60 мкмоль/л. Аммиак должен подвергаться связыванию в печени с образованием нетоксичных соединений, легко выделяющихся с мочой.

Один из путей связывания и обезвреживания аммиака в организме это биосинтез глутамина (и, возможно, аспарагина). Глутамин и аспарагин выделяются с мочой в небольшом количестве. Скорее они выполняют транспортную функцию переноса аммиака в нетоксичной форме. Синтеза глутамина, катализируется глутаминсинтетазой.

Второй и основной путь обезвреживания аммиака в печени - образование мочевины, который будет рассмотрен ниже в мочевинообразовательной функции печени.

В гепатоцитах отдельные аминокислоты подвергаются специфическим преобразованиям. Из серосодержащих аминокислот образуется таурин, который позднее включается в парные жёлчные кислоты (таурохолевая, тауродезоксихолевая), а также может служить антиоксидантом, связывая гипохлорит анион, стабилизировать мембраны клеток; происходит активация метионина, который в виде S - аденозилметионина служит источником метильных групп реакциях окончания генеза креатина, синтеза холина для холинфосфатидов (липотропных веществ).

Биосинтез заменимых аминокислот. Любая из заменимых аминокислот может синтезироваться в организме в необходимых количествах. При этом углеродная часть аминокислоты образуется из глюкозы, а аминогруппа вводится из других аминокислот путем трансаминирования. Алании, аспартат, глутамат образуются из пирувата, оксалоацетата и б-кетоглутарата соответственно. Глутамин образуется из глутаминовой кислоты при действии глутаминсинтетазы:

Аспарагин синтезируется из аспарагиновой кислоты и глутамина, который служит донором амидной группы; реакцию катализирует аспарагинсинтетаза пролин образуется из глутаминовой кислоты. Гистидин (частично заменимая аминокислота) синтезируется из АТФ и рибозы: пуриновая часть АТФ поставляет фрагмент —N=CH—NH— для имидазольного цикла гистидина; остальная часть молекулы образуется за счет рибозы.

Если в пище нет заменимой аминокислоты, клетки синтезируют ее из других веществ, и тем самым поддерживается полный набор аминокислот, необходимый для синтеза белков. Если же отсутствует хотя бы одна из незаменимых аминокислот, то прекращается синтез белков. Это объясняется тем, что в состав подавляющего большинства белков входят все 20 аминокислот; следовательно, если нет хотя бы одной из них, синтез белков невозможен.

Частично заменимые аминокислоты синтезируются в организме, однако скорость их синтеза недостаточна для обеспечения всей потребности организма в этих аминокислотах, особенно у детей. Условно заменимые аминокислоты могут синтезироваться из незаменимых: цистеин — из метионина, тирозин — из фенилаланина. Иначе говоря, цистеин и тирозин — это заменимые аминокислоты при условии достаточного поступления с пищей метионина и фенилаланина .

1.1.4 Участие печени в обмене витаминов

Участие печени в обмене витаминов складывается из процессов депонирования всех жирорастворимых витаминов: А, Д, Е, К, F (секреция желчи так же обеспечивает всасывание этих витаминов) и многих из гидровитаминов (В 12 , фолиевая кислота, В 1 , В 6 , РР и др.), синтеза некоторых витаминов (никотиновая кислота) и коферментов.

Особая печени заключается в том, что в ней происходит активация витаминов:

  1. Фолиевая кислота с помощью витамина С восстанавливается в тетрагидрофолиевую кислоту (ТГФК) ; Восстановление сводится к разрыву двух двойных связей и присоединению четырех водородных атомов в положениях 5, 6, 7 и 8 с образованием тетрагидрофолиевой кислоты (ТГФК). Оно протекает в 2 стадии тканях при участии специфических ферментов, содержащих восстановленный НАДФ. Сначала при действии фолатредуктазы образуется дигидрофолиевая кислота (ДГФК), которая при участии второго фермента - дигидрофолатредуктазы - восстанавливается в ТГФК:
  1. Витамины В 1 и В 6 фосфорилируются в тиаминдифосфат и пиридоксальфосфат соответственно . Витамин В 6 (пиридоксин) производный 3-оксипиридина. Термином витамин В 6 обозначают все три производных 3-оксипиридина, обладающих одинаковой витаминной активностью: пиридоксин (пиридоксол), пиридоксаль и пиридоксамин:

Хотя все три производных 3-оксипиридина наделены витаминными свойствами, коферментные функции выполняют только фосфорилированные производные пиридоксаля и пиридоксамина. Фосфорилирование пиридоксаля и пиридоксамина является ферментативной реакцией, протекающей при участии специфических киназ. Синтез пиридоксальфосфата, например, катализирует пиридоксалькиназа:

Витамин В 1 (тиамин). В химической структуре его содержатся два кольца - пиримидиновое и тиазоловое, соединенных метиленовой связью. Обе кольцевые системы синтезируются отдельно в виде фосфорилированных форм, затем объединяются через четвертичный атом азота.

В превращении витамина B1 в его активную форму - тиаминпирофосфат (ТПФ), называемый также тиаминдифосфатом (ТДФ), участвует специфический АТФ-зависимый фермент тиаминпирофосфокиназа.

  1. Часть каротинов преобразуется в витамин А под влиянием каротиндиоксигеназы. Каротины являются провитаминами для витамина А. Известны 3 типа каротинов: б-, в- и г-каротины, отличающиеся друг от друга химическим строением и биологической активностью. Наибольшей биологической активностью обладает в-каротин, поскольку он содержит два в-иононовых кольца и при распаде в организме из него образуются две молекулы витамина А:

При окислительном распаде б- и г-каротинов образуется только по одной молекуле витамина А, поскольку эти провитамины содержат по одному в-иононовому кольцу.

4. Витамин Д подвергается первому гидроксилированию на пути получения гормона кальцитриола; в печени осуществляется гидроксилирование в 25-м положении. Ферменты, катализирующие эти реакции, называются гидроксилазами, или монооксигеназами. В реакциях гидроксилирования используется молекулярный кислород.

5. Окислившийся витамин С восстанавливается в аскорбиновую кислоту;

6. Витамины РР, В 2 , пантотеновая кислота включаются в соответствующие нуклеотиды (НАД + , НАД + Ф, ФМН, ФАД, КоА-SH);

7. Витамин К окисляется, чтобы в виде своего пероксида служить коферментом в созревании (посттрансляционной модификации) белковых факторов свёртывания крови.

В печени синтезируются белки, выполняющие транспортные функции по отношению к витаминам. Например, ретинолсвязывающий белок (его содержание уменьшается при опухолях), витамин Е-связывающий белок и т.д. Часть витаминов, в первую очередь жирорастворимых, а также продуктов их преобразований выделяется из организма в составе жёлчи.

1.1.5 Участие печени в водно-минеральном обмене

Участие печени в водно-минеральном обмене состоит в том, что она дополняет деятельность почек в поддержании водно-солевого равновесия и является как бы внутренним фильтром, организма. Печень задерживает ионы Na + , К + , Сl - , Ca 2+ и воду и выделяет их в кровь. Кроме того, печень депонирует макро- (К, Na, Ca, Mg, Fe) и микро- (Cu, Mn, Zn, Cо, As, Cd, Pb, Se) элементы и участвует в их распределении по другим тканям с помощью транспортных белков.

Для накопления железа гепатоциты синтезируют специальный белок - ферритин. В ретикулоэндотелиоцитах печени и селезенки регистрируется водонерастворимый железосодержащий протеиновый комплекс - гемосидерин. В гепатоцитах синтезируется церулоплазмин, который, кроме вышеназванных функций, выполняет роль транспортного белка для ионов меди. Трансферрин, обладающий как и церулоплазмин, полифункциональностью, также образуется в печени и используется для переноса в плазме крови только ионов железа. Данный белок необходим для эмбрионального клеточного роста в период формирования печени. В печени ион Zn включается в алкогольдегидрогеназу, необходимую для биотрансформации этанола. Поступившие в гепатоциты соединения селена преобразуются в Se-содержащие аминокислоты и с помощью специфической т-РНК включаются в различные Se-протеины: глутатионпероксидазу (ГПО), 1-йодтиронин-5’- дейодиназу, Se-протеин Р. Последний считают основным транспортёром этого микроэлемента. Дейодиназа, обнаруженная не только в печени, обеспечивает конверсию прогормона тироксина в активную форму - трийодтиронин. Как известно, глутатионпероксидаза - ключевой фермент антирадикальной защиты. В печени сера, включённая в аминокислоты, окисляется до сульфатов, которые в виде ФАФС (фосфоаденозилфосфосульфатов) используются в реакциях сульфирования ГАГов, липидов, а также в процессах биотрансформации ксенобиотиков и некоторых эндогенных веществ (примеры продуктов инактивации - скатоксилсульфат, индоксилсульфат). Печень способна служить временным депо воды, особенно при отёках (количество Н 2 О может составлять до 80 % от массы органа) .

1.1.6 Участие печени в пигментном обмене

Участие печени в обмене пигментов проявляется в превращении хромопротеидов до билирубина в клетках РЭС, имеющихся в печени, конъюгации билирубина в самих печеночных клетках и разложении в них всасывающегося из кишечника уробилиногена до непигментных продуктов.

Гемохромогенные пигменты, образуются в организме при распаде гемоглобина (в значительно меньшей степени при распаде миоглобина, цитохромов и др.).

Начальным этапом распада гемоглобина (в клетках макрофагов, в частности в звездчатых ретикулоэндотелиоцитах, а также в гистиоцитах соединительной ткани любого органа) является разрыв одного метинового мостика с образованием вердоглобина. В дальнейшем от молекулы вердоглобина отщепляются атом железа и белок глобин. В результате образуется биливердин, который представляет собой цепочку из четырех пиррольных колец, связанных метановыми мостиками. Затем биливердин, восстанавливаясь, превращается в билирубин - пигмент, выделяемый с желчью и поэтому называемый желчным пигментом. Образовавшийся билирубин называется непрямым (неконъюгированным) билирубином. Он нерастворим в воде, дает непрямую реакцию с диазореактивом, т.е. реакция протекает только после предварительной обработки спиртом. В печени билирубин соединяется (конъюгирует) с глюкуроновой кислотой. Эта реакция катализируется ферментом УДФ-глюкуронилтрансферазой, при этом глюкуроновая кислота вступает в реакцию в активной форме, т.е. в виде УДФГК. Образующийся глюкуронид билирубина получил название прямого билирубина (конъюгированный билирубин). Он растворим в воде и дает прямую реакцию с диазореактивом. Большая часть билирубина соединяется с двумя молекулами глюкуроновой кислоты, образуя диглюкуронид билирубина. Образовавшийся в печени прямой билирубин вместе с очень небольшой частью непрямого билирубина выводится с желчью в тонкую кишку. Здесь от прямого билирубина отщепляется глюкуроновая кислота и происходит его восстановление с последовательным образованием мезобилирубина и мезобилиногена (уробилиногена). Из тонкой кишки часть образовавшегося мезобилиногена (уробилиногена) резорбируется через кишечную стенку, попадает в воротную вену и током крови переносится в печень, где расщепляется полностью до ди- и трипирролов. Таким образом, в норме в общий круг кровообращения и мочу мезобилиноген не попадает. Основное количество мезобилиногена из тонкой кишки поступает в толстую и здесь восстанавливается до стеркобилиногена при участии анаэробной микрофлоры. Образовавшийся стеркобилиноген в нижних отделах толстой кишки (в основном в прямой кишке) окисляется до стеркобилина и выделяется с калом. Лишь небольшая часть стеркобилиногена всасывается в систему нижней полой вены (попадает сначала в геморроидальные вены) и в дальнейшем выводится с мочой (приложение 18).

В большинстве случаев заболеваний печени клинические тесты уточняют характер поражения, основываясь на принципах синдромальной диагностики. Основные патологические процессы объединяют в лабораторные синдромы с учётом индикаторных тестов: 1) цитолиза; 2) холестаза (внутри- и внепечёночного); 3) гепатодепрессии (печёночно-клеточной недостаточности, малой недостаточности печени, недостаточности синтетических процессов); 4) воспаления; 5) шунтирования печени; 6) регенерации и опухолевого роста.

При подозрении на конкретную патологию учитываются основные биохимические синдромы, характерные для данного заболевания. За основу берётся стандартная программа функционального обследования, но по каждому случаю исследуется не менее двух тестов .

2.2.1 Синдром цитолиза

Возникает при повреждении клеток печени и протекает на фоне выраженного нарушения целостности мембран гепатоцитов и их органелл, приводящих к выделению составных частей клеток в межклеточное пространство и кровь. Подвергающаяся цитолизу клетка чаще сохраняет свою жизнеспособность, если же она погибает, то говорят о некрозе.

При патологии гепатоцитов ферменты, освобождающиеся из них, быстро оказываются в плазме крови, так как клетки печени имеют прямой контакт с интерстициальным и внутрисосудистым пространством, кроме того, проницаемость стенок капилляров в этом органе высока.

Главные биохимические сдвиги отмечаются в общих путях катаболизма. Страдает окислительное фосфорилирование, в результате падает уровень АТФ, изменяется концентрация электролитов. Дисбаланс последних отражается на степени проницаемости клеточных мембран. Длительное угнетение синтеза АТФ приводит к дефициту энергии, повреждению синтеза белка, мочевины и гиппуровой кислоты, наблюдаются изменения в липидном и углеводном обменах.

Важную роль в прогрессировании этого состояния играют лизосомы, которые разрушаются из-за распада мембранных структур, и в цитозоль выходят гидролитические ферменты.

Данный лабораторный синдром чаще встречается при остром вирусном гепатите и других острых повреждениях печени (лекарственных, токсических), хронических активных гепатитах, циррозах, при быстро развивающейся и длительной подпечёночной желтухе .

2.2.2 Синдром холестаза

Обусловлен сдвигами в жёлчевыделительной функции печёночных клеток с нарушением образования жёлчной мицеллы и поражением мельчайших жёлчных ходов при внутрипечёночном холестазе. Внепечёночный холестаз связан с механическими препятствиями для нормального оттока жёлчи во внепечёночных жёлчных путях.

При синдроме холестаза повышается активности экскреторных ферментов, наблюдается гиперхолестеринемия, увеличивается содержание фосфолипидов, липопротеидов низкой плотности (ЛПНП), солей жёлчных кислот. Возможна гипербилирубинемия за счёт связанной фракции, уменьшается концентрации альбуминов и увеличивается содержания б, в- и г-глобулинов в сыворотке крови.

При синдроме холестаза важное диагностическое значение имеет определение активности щелочной фосфатазы, которая отщепляет остаток фосфорной кислоты от её органических эфиров. Это гетерогенный фермент, который представлен различными изомерами, т. к. при синдроме отмечается максимальный рост щелочной фосфатазы. Определение активности лейцинаминопептидазы (ЛАП), гидролизующей N-концевые остатки аминокислот в белках так же важно при холестазе. При вирусном гепатите активность ЛАП, как и аминотрансфераз, усилена (и в 100 раз может превышать верхнюю границу физиологического уровня).

У больных холестатическими формами повреждения печени регистрируются сдвиги пигментного обмена. В частности, отмечается гипербилирубинемия, обусловленная связанной его формой. Билирубин за счёт своей гидрофильности появляется в моче, придавая ей тёмную окраску. С другой стороны, в моче отсутствует уробилин. Характерным диагностическим признаком является наличие солей жёлчных кислот в моче, которые придают ей пенистость .

2.2.3 Синдром гепатодепрессии (малой недостаточности печени)

В основном характеризуется нарушением синтетической функции. При синдроме наблюдается понижение активности холинэстеразы в сыворотке крови, количественные сдвиги уровня глюкозы крови, уменьшение содержания общего белка, особенно альбуминов, гипохолестеринемия, падение значений II, V, VII факторов свёртывания крови, гипербилирубинемия за счёт роста вклада свободной фракции, изменение параметров нагрузочных проб (бромсульфалеиновой по Розенталю-Уайту, индоциановой-вофавердиновой, уевердиновой, антипириновой, галактозной, кофеиновой).

По диагностической ценности гепатодепрессивный синдром значительно уступает цитолитическому. Однако биохимические индикаторы этого страдания играют важную роль для определения тяжести заболевания и выявления тяжёлой печёночно-клеточной недостаточности, характерной для молниеносных форм. Наиболее чувствительными критериями являются антипириновая проба, содержание проконвертина в сыворотке крови (в норме 80-120%), которые у большинства больных с синдромом гепатодепрессии со средней степенью тяжести снижены. В повседневной практике пока широко используются тесты средней чувствительности - протромбиновый индекс и активность холинэстеразы (ХЭ) в сыворотке крови. В организме человека определяют два вида ХЭ: истинную ацетилхолинэстеразу и псевдохолинэстеразу. Первая гидролизует ацетилхолин, и ею богаты нервная ткань и эритроциты, вторая синтезируется в основном в гепатоцитах и расщепляет как холиновые, так и нехолиновые эфиры. Активность ХЭ является важным лабораторно-диагностическим параметром, характеризующим функциональное состояние печени. При данном синдроме активность ХЭ угнетается. К тестам этой группы примыкает определение содержания глюкозы. Установлено, что чем тяжелее течение острого гепатита, тем чаще наблюдается гипогликемия. При острой печёночной недостаточности снижение уровня этого моносахарида в крови развивается у каждого четвертого пациента.

Дисбаланс белкового спектра сыворотки крови характеризуется гипоальбуминемией и повышением величин глобулинов за счет г-фракции. При лёгкой форме гепатита количество протеинов не изменено, при более тяжёлых - отмечается гиперпротеинемия на фоне снижения цифр альбуминов. Вторичная гипоальбуминемия при хронических поражениях печени (тяжелом длительном вирусном гепатите, ЦП) служит неблагоприятным прогностическим признаком. Она может привести к падению онкотического давления плазмы крови, развитию отёков, и впоследствии к асциту.

Нарушения липидного обмена, а именно, гипохолестеринемия особенно для эфиросвязанной фракции, отмечаются при остром вирусном гепатите, злокачественных опухолях печени. Наибольшее диагностическое значение имеет определение фракционного состава холестерина и отдельных липопротеинов (прежде всего ЛПВП) плазмы крови .

Изменения пигментного обмена при нарушении функции части печёночных клеток характеризуются гипербилирубинемией за счёт свободного билирубина. В зависимости от уровня метаболического блока выделяют повреждения на следующих этапах: в активном транспорте свободной фракции из крови в клетки печени и в образовании билирубинглюкуронидов в гепатоцитах.

2.2.4 Синдром воспаления

Обусловлен сенсибилизацией клеток иммунокомпетентной ткани и активацией ретикулогистиоцитарной системы. Гистологическим выражением этого синдрома является лимфо-макрофагальная инфильтрация портальных трактов и внутридольковой стромы, то есть иммунное воспаление. Любая иммунологическая реакция развёртывается при взаимодействии Т- и В-лимфоцитов, макрофагов, нейтрофилов. При алкогольных поражениях печени в процесс вовлекаются эозинофилы. Для синдрома воспаления характерно: гиперпротеинемия за счёт роста в основном доли г-глобулинов, повышение величин иммуноглобулинов, особенно IgG, IgM, IgA, изменение белково-осадочных проб (тимоловой, сулемовой, Вельтмана), появление неспецифических антител к дезоксирибо-нуклеопротеидам, гладкомышечным волокнам, митохондриям, микросомам.В клинико-диагностических лабораториях находят широкое применение пробы на коллоидную устойчивость (тимоловая, проба Вельтмана, цинк-сульфатная). Положительный результат этих тестов обусловлен количественными изменениями в содержании отдельных фракций (б-, в-, г-глобулинов) либо снижением соотношения альбумины/глобулины. Наибольшее распространение получила проба Маклагана (тимоловая), которая четко регистрируется в 90% случаев острого вирусного гепатита ещё в преджелтушной стадии заболевания, а также и при безжелтушной его форме.

Регистрируется за счёт развития мощных венозных коллатералей с последующим поступлением в общий кровоток большого количества веществ, которые в норме должны были трансформироваться в печени. К этим соединениям принадлежат соли аммония, фенолы, аминокислоты (тирозин, фенилаланин, триптофан, метионин), жирные кислоты с короткой цепью, содержащие 4-8 атомов углерода (масляная, валериановая, капроновая и каприловая кислоты) и меркаптаны. Накапливаясь в крови в больших концентрациях, они становятся токсичными для центральной нервной системы и угрожают возникновением печёночной энцефалопатии. К веществам этой группы относят также эндотоксины - липополисахариды грамотрицательных кишечных микробов .

При заболеваниях печени, особенно при циррозе, нарушены процессы дезаминирования аминокислот, синтеза мочевины. Аминный азот крови не способен обезвреживаться в печени (за счёт преобразования в мочевину) и направляется в общий круг кровообращения, где высокая его концентрация вызывает токсический эффект. «Аммиачная» интоксикация - один из важнейших симптомов, стимулирующих развитие «печёночной» комы и энцефалопатии .

2.2.6 Синдром регенерации и опухлевого роста печени

Его индикатором является обнаружение в сыворотке крови больших количеств б-фетопротеина (в 8 раз и более по сравнению с нормой). Малые повышения уровня этого гликопротеина (в 1,5-4 раза) чаще встречаются при усилении регенерации, в частности при активном циррозе печени. Вообще, переход синдрома в хронический гепатит, далее в цирроз и рак можно рассматривать как единый патологический процесс.

Заключение

Печень является одним из наиболее важных органов, поддерживающих жизнедеятельность организма, так как биохимические функции, включающие различные обменные реакции, протекающие в печени, - основа и связующее ядро общего метаболизма веществ. Кроме того, печень выполняет специфические функции, например, участвует в пищеварении, секретируя желчь; фильтрует кровь с образованием конечных продуктов обмена веществ, которые в дальнейшем выводятся из организма; частично обеспечивает иммунитет, синтезируя белки плазмы крови.

В общем все функции печени ведут к поддержанию гомеостаза и нарушение хотя бы одной из них может повлечь изменения во всем организме, это значит, что заболевания печени влияют на состояние остальных органов и организма в целом. Поэтому в курсовой работе было рассмотрено нормальное и патологическое состояние печени и были затронуты основы лабораторной диагностики, так как знание навыков определения синдромов поражения печени позволяет в дальнейшем точно поставить диагноз и определить причину заболевания, что очень важно на ранней стадии и дает возможность назначить соответствующее лечение.

Список литературы

1. Анохин, П.К. Нейрофизиологическая теория голода, аппетита и насыщения [Электронный ресурс] / Анохин П. К., Судаков К.В. - 1971.- т. 2, № 1. - с. 3. - режим доступа: http://www.curemed.ru/medarticle/articles/14248.htm.

2. Березов, Т.Т. Биологическая химия [Текст]: учебник / Т. Т. Березов, Б. Ф. Коровкин. - 3-е изд., перераб и доп. - М.: Медицина, 1998. - 704 с.: ил. - (Учеб. лит. Для студентов мед вузов). - ISBN 5-225-02709-1.

3. Биохимия [Текст]: учебник для вузов / под ред. чл.-корр. РАН, проф. Е. С. Северина. - 2-е изд., испр. - М.: ГЭОТАР-МЕД, 2004. - 748 с.: ил. - (серия «XXI век»). - ISBN 5-9231-0390-7.

4. Клиническая биохимия [Текст] / под ред. чл. корр. РАН, акад РАМН В. А. Ткачука. - 2-е изд., испр и доп. - М.: ГЭОТАР-МЕД, 2004. - 512 с. - (Классический университетский учебник). - ISBN 5-9231-0420-2.

5. Марри, Р. Биохимия человека [Текст]: в 2-х томах / Р. Марри, Д. Греннер, П. Мейес, В. Родуэлл. - пер. с англ. В. В. Борисова, Е. В. Дайниченко; под ред. Л.М. Гинодмана. - М.: Мир, 1993. - ил. - ISBN 5-03-001774-7.

6. Никитина, Л.П. Биохимия печени в норме и при патологии [Текст]: учебное пособие для преподавателей и студентов медицинских вузов, врачей, интернов, клинических ординаторов / Л.П.Никитина, Н.В.Соловьева,

П.Б.Цидендамбаев. - Чита: ГОУ ЧГМА, 2004. - 52 с.

7. Николаев, А.Я. Биологическая химия [Текст] / А.Я. Николаев. - 4-е изд., перераб. и доп. - М.: Медицинское информационное агенство. - 2004. - 556 с.: ил. - ISBN 5-89481-219-4.

8. Страйер, Л. Биохимия [Текст]: в 3-х томах / Л. Страйер. - пер. с англ. М. Д. Гроздовой; под ред. С.Е. Северина. - М.: Мир, 1984. - ил.

1. Выберите наиболее точный ответ: печень выполняет важную роль в обмене желчных пигментов, которые образуются в результате распада:

2. Цитохромов

3. Витаминов

2. В печени 1/4 часть билирубина связывается с УДФ-глюкуроновой кислотой и называется:

1. Прямой билирубин

2. Диглюкуронид билирубина

3. Непрямой билирубин

4. Гаптоглобин

5. Свободный билирубин

3. Все вещества первичной мочи делят на:

1. Пороговые

2. Беспороговые

3. Проникающие

4. Непроникающие

4. Какими способами трансмембранного транспорта происходит реабсорбция в почках:

1. Простая диффузия

2. Облегченная диффузия

3. Активный транспорт

4. Везикулярный транспорт

5. Укажите неправильное утверждение. В дистальных канальцах почек:

1. Ионы натрия реабсорбируются независимо от воды

2. В обмен на поступающий в эпителий дистальных канальцев натрий в мочу секретируются анионы

3. Реабсорбция ионов натрия регулируется альдостероном

6. Для определения клиренса вводят вещество:

1. Которое фильтруется в клубочках, и не реабсорбируется и не секретируется канальцами нефронов

2. Которое фильтруется в клубочках и реабсорбируется и секретируется канальцами нефронов

3. Которое не фильтруется в клубочках и не реабсорбируется и не секретируется канальцами нефронов

7. При ацидозе количество бикарбонатов в моче:

1. Повышается

2. Снижается

3. Не изменяется

8. Источниками сульфатов мочи являются:

1. Асп, глу

2. Лиз, арг, гис

3. Цис, мет

9. Суточное выделение креатинина зависит от:

1. Характера питания

2. Мышечной массы

3. Интенсивности липолиза

10. В норме креатин в моче присутствует у:

1. Взрослых

3. Стариков

11. Альдостерон:

1. Стимулирует реабсорбцию в почках ионов калия

2. Стимулирует реабсорбцию в почках ионов натрия

12. Повышенное выделение мочевины с мочой наблюдается при:

1. Поражении печени

2. Поражении сердца

3. Голодании, ожогах

13. Глюкозурия наблюдается при повышении содержания глюкозы крови выше:

1. 5, 55 - 6,0 ммоль/л

2. 8,3 - 8,8 ммоль/л

3. 6,1-8,0 ммоль/л

14. Укажите нормальную активность альфа-амилазы в моче

1. 16-30 г/(ч. л.)

2. 28-160 г/(ч. л.)

3. 3,3 - 5,5 ммоль/л

15. Какие камни образуются в кислой моче:

1. Оксалатные

2. Фосфатные

3. Уратные

4. Карбонатные

16. В основе количественного определения белка в моче по методу Робертса-Стольникова -Брандберга лежит:

1. Проба кипячением

2. Проба Геллера

3. Биуретовая реакция

17. Ложная протеинурия наблюдается при патологии:

2. Надпочечников

3. Мочевыводящих путей

18. Ультрафильтрат первичной мочи не содержит белки, молекулярная масса которых выше:

19. Укажите основной источник энергии для работы головного мозга в норме?

1. Кетоновые тела

2. Глюкоза

3. Жирные кислоты

20. Укажите медиаторы ЦНС тормозного типа действия:

3. Глицин

21. Медиатором холинергических синапсов является:

1. Ацетилхолин

2. Фосфатидилхолин

22. Какие аминокислоты преобладают в составе коллагена?

1. Глицин

2. Пролин

3. Аргинин

4. Цистеин

23. Прочность коллагеновых волокон определяется:

24. Соединительная ткань характеризуется наличием:

1. Липопротеинов

2. Протеогликанов

3. Хромопротеинов

25. Прочность коллагеновых волокон определяется:

1. Образованием двойной спирали из полипептидных цепей

2. Образованием тройной спирали из полипептидных цепей

3. Ковалентными связями между молекулами тропоколлагена

4. Гидрофобными взаимодействиями между молекулами тропоколлагена

26. Соединительная ткань характеризуется наличием:

1. Липопротеинов

2. Протеогликанов

3. Хромопротеинов

27. Белок коллаген отличается своим аминокислотным составом. Какие аминокислоты наиболее часто повторяются в полипептидных цепях коллагена?

1. Гли-сер-вал

2. Гли-арг-тир

3. ФГн-гли-цис

4. гли-про-ала

28. Какой компонент соединительной ткани составляет основу рубца?

1. Фибронектин

2. Гликозаминогликаны

3. Коллаген

4. Эластин

29. Какой витамин способствует образованию рубца в заживающей ране?

30. Какой из перечисленных белков осуществляет взаимосвязь клеток, волокон и компонентов основного вещества соединительной ткани в единое целое?

1. Коллаген

2. Эластин

3. Фибронектин

31. Первой фазой биотрансформации ксенобиотиков является:

1. Конъюгация

2. Ферментативная модификация

32. Второй фазой биотрансформации ксенобиотиков является:

1. Конъюгация

2. Ферментативная модификация

3. Стабилизация в липидном бислое мембран

33. Донором ацетильных групп в реакциях конъюгации является:

3. Ацетил-КоА

4. Ацил-КоА

34. Активной формой серной кислоты в реакциях конъюгации является:

1. УДФ-глюкуроновая кислота

2. УДФ-галактоза

35. Источником глюкуроновой кислоты в реакциях конъюгации является:

1. УДФ-глюкуроновая кислота

1. Выберите наиболее точный ответ: печень выполняет важную роль в обмене желчных пигментов, которые образуются в результате распада:

2. Цитохромов

3. Витаминов

2. В печени 1/4 часть билирубина связывается с УДФ-глюкуроновой кислотой и называется:

1. Прямой билирубин

2. Диглюкуронид билирубина

3. Непрямой билирубин

4. Гаптоглобин

5. Свободный билирубин

3. Все вещества первичной мочи делят на:

1. Пороговые

2. Беспороговые

3. Проникающие

4. Непроникающие

4. Какими способами трансмембранного транспорта происходит реабсорбция в почках:

1. Простая диффузия

2. Облегченная диффузия

3. Активный транспорт

4. Везикулярный транспорт

5. Укажите неправильное утверждение. В дистальных канальцах почек:

1. Ионы натрия реабсорбируются независимо от воды

2. В обмен на поступающий в эпителий дистальных канальцев натрий в мочу секретируются анионы

3. Реабсорбция ионов натрия регулируется альдостероном

6. Для определения клиренса вводят вещество:

1. Которое фильтруется в клубочках, и не реабсорбируется и не секретируется канальцами нефронов

2. Которое фильтруется в клубочках и реабсорбируется и секретируется канальцами нефронов

3. Которое не фильтруется в клубочках и не реабсорбируется и не секретируется канальцами нефронов

7. При ацидозе количество бикарбонатов в моче:

1. Повышается

2. Снижается

3. Не изменяется

8. Источниками сульфатов мочи являются:

1. Асп, глу

2. Лиз, арг, гис

3. Цис, мет

9. Суточное выделение креатинина зависит от:

1. Характера питания

2. Мышечной массы

3. Интенсивности липолиза

10. В норме креатин в моче присутствует у:

1. Взрослых

3. Стариков

11. Альдостерон:

1. Стимулирует реабсорбцию в почках ионов калия

2. Стимулирует реабсорбцию в почках ионов натрия

12. Повышенное выделение мочевины с мочой наблюдается при:

1. Поражении печени

2. Поражении сердца

3. Голодании, ожогах

13. Глюкозурия наблюдается при повышении содержания глюкозы крови выше:

1. 5, 55 - 6,0 ммоль/л

2. 8,3 - 8,8 ммоль/л

3. 6,1-8,0 ммоль/л

14. Укажите нормальную активность альфа-амилазы в моче

1. 16-30 г/(ч. л.)

2. 28-160 г/(ч. л.)

3. 3,3 - 5,5 ммоль/л

15. Какие камни образуются в кислой моче:

1. Оксалатные

2. Фосфатные

3. Уратные

4. Карбонатные

16. В основе количественного определения белка в моче по методу Робертса-Стольникова -Брандберга лежит:

1. Проба кипячением

2. Проба Геллера


3. Биуретовая реакция

17. Ложная протеинурия наблюдается при патологии:

2. Надпочечников

3. Мочевыводящих путей

18. Ультрафильтрат первичной мочи не содержит белки, молекулярная масса которых выше:

19. Укажите основной источник энергии для работы головного мозга в норме?

1. Кетоновые тела

2. Глюкоза

3. Жирные кислоты

20. Укажите медиаторы ЦНС тормозного типа действия:

3. Глицин

21. Медиатором холинергических синапсов является:

1. Ацетилхолин

2. Фосфатидилхолин

22. Какие аминокислоты преобладают в составе коллагена?

1. Глицин

2. Пролин

3. Аргинин

4. Цистеин

23. Прочность коллагеновых волокон определяется:

24. Соединительная ткань характеризуется наличием:

1. Липопротеинов

2. Протеогликанов

3. Хромопротеинов

25. Прочность коллагеновых волокон определяется:

1. Образованием двойной спирали из полипептидных цепей

2. Образованием тройной спирали из полипептидных цепей

3. Ковалентными связями между молекулами тропоколлагена

4. Гидрофобными взаимодействиями между молекулами тропоколлагена

26. Соединительная ткань характеризуется наличием:

1. Липопротеинов

2. Протеогликанов

3. Хромопротеинов

27. Белок коллаген отличается своим аминокислотным составом. Какие аминокислоты наиболее часто повторяются в полипептидных цепях коллагена?

1. Гли-сер-вал

2. Гли-арг-тир

3. ФГн-гли-цис

4. гли-про-ала

28. Какой компонент соединительной ткани составляет основу рубца?

1. Фибронектин

2. Гликозаминогликаны

3. Коллаген

4. Эластин

29. Какой витамин способствует образованию рубца в заживающей ране?

30. Какой из перечисленных белков осуществляет взаимосвязь клеток, волокон и компонентов основного вещества соединительной ткани в единое целое?

1. Коллаген

2. Эластин

3. Фибронектин

31. Первой фазой биотрансформации ксенобиотиков является:

1. Конъюгация

2. Ферментативная модификация

32. Второй фазой биотрансформации ксенобиотиков является:

1. Конъюгация

2. Ферментативная модификация

3. Стабилизация в липидном бислое мембран

33. Донором ацетильных групп в реакциях конъюгации является:

3. Ацетил-КоА

4. Ацил-КоА

34. Активной формой серной кислоты в реакциях конъюгации является:

1. УДФ-глюкуроновая кислота

2. УДФ-галактоза

35. Источником глюкуроновой кислоты в реакциях конъюгации является:

1. УДФ-глюкуроновая кислота



Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.