Реагенты железа. Железо: качественные реакции на его ионы

Какие бывают методы очистки воды от железа

Концентрация примесей железа в питьевой воде должна быть не более 0,3 мг/л. Как правило, в подземных скважинных водах России содержание этого загрязнения превышено в несколько раз. В связи с этим возникает вопрос, как очистить воду от железа до питьевых норм. Выбор метода очищения зависит от формы железа находящейся в воде. Выбрать правильный метод обезжелезивания воды можно, сделав расширенный химический анализ, и проведя с водой ряд физических тестов: отстаивание, встряхивание, контакт с воздухом, визуальный осмотр. От правильного выбора способа очистки воды от железа зависит работоспособность и срок службы установки водоочистного оборудования.

  • Очистка воды от двухвалентного железа , как правило, оно обнаруживается в скважинах в большинстве случаев. Применяют каталитическое обезжелезивание на песчаных фильтрах с предварительной аэрацией воды с помощью компрессора. Такой подход позволяет дополнительно удалить марганец и сероводород. Применяются каталитические фильтрующие материалы. Подробно как работает такая схема можно посмотреть на нашем сайте .
  • Очистить воду от коллоидного железа и коллоидных примесей можно с помощью коагулирования специальным реагентом. В некоторых случаях параллельно коагулированию применяется дозирование гипохлорита натрия. Далее скоагулированные и окисленные частицы отфильтровываются на фильтрующей загрузке. Подробно о природе коллоидных частиц и сущности метода очистки от коллоидного железа читайте на нашем сайте .
  • Очищать воду от органического железа можно двумя способами: 1) Окислением органики - реагентный способ, с помощью дозирования гипохлорита натрия или озонирование. 2) Безреагентный способ - после каталитического обезжелезивателя устанавливается органопоглотитель на специальной ионообменной смоле Purolite А500P для селективного удаления органических примесей.
  • Очищение воды от бактериального железа - железобактерии проводиться после обычного обезжелезивания, путем установки бактерицидной ультрафиолетовой лампы соответствующей производительности. Либо фильтрацией через посеребренные активированные угли. Если применялось дозирование реагента (гипохлорита натрия или озона) бактериальное железо автоматически удаляется.


Какие формы содержания железа в подземной воде

Железо в подземной воде может находиться в следующих состояниях:

  • Растворенное, двухвалентное ионное железо . Именно в этой форме железо находиться в скважинах до поступления на поверхность земли. Без доступа воздуха оно так и остается в растворенном состоянии. После контакта с кислородом воздуха вода мутнеет и выпадает осадок трехвалентного железа. Скорость выпадения осадка зависит от величины кислотно-щелочного баланса воды.
  • Трехвалентное нерастворимое железо - ржавчина, окислы железа, рыжий осадок. Образуется при взаимодействии растворенного двухвалентного железа с воздухом, то есть при поступлении воды из скважины на поверхность. Обнаруживается на внутренней поверхности трубопроводов. Общее железо складывается из суммы растворенного и нерастворенного. В анализе не всегда указывается соотношение двухвалентного и трехвалентного железа. Если специалист берет пробу воды на источнике, то по внешним признакам он должен понимать приблизительное соотношение. Либо добавлять реагент, фиксирующий это соотношение. От этого зависит минимизация стоимости оборудования для водоочистки.
  • Коллоидное железо находится во взвешенном состоянии в воде и не способно осесть естественным образом под действием силы тяжести. Коллоидные частицы имеют размер менее 1 микрона и не удаляются на фильтрующих загрузках, так как последние имеют размер пор более 5 микрон. Этот вид железа ни как не регистрируется в анализе воды. Распознать его может опытный специалист. О том, как его распознать и как с ним бороться в следующей главе.
  • Органическое железо - находится в виде крупных органических молекул, в центре которых находиться атом железа. Что бы по анализу воды понять, что такое железо находиться в воде, нужно посмотреть параметр "перманганатная окисляемость" если он превышен больше 4 единиц, то такая форма железа у вас в воде. Как правило, так же повышен параметр цветность и мутность. Аэрационной колонной и последующей фильтрацией на гранулированном материале такое железо не удаляется.
  • Бактериальное железо - образуются паутинообразные скопления коричневого цвета, колониями. Таких скоплений может быть до 20, например, в ведре с водой постоявшей некоторое время. Такой вид железа встречается редко, при определенных химических условиях. Важно отметить: от формы содержания железа в подземной воде возникают определенные проблемы, с которыми сталкивается потребитель и соответственно выбирается тот или иной метод подготовки воды. Рассмотрим, какие проблемы вызывают перечисленные формы железа в воде.

Растворенное железо Коллоидное железо Бактериальное железо

Проблемы связанные с высоким содержанием железа в воде

В зависимости от того, в какой форме содержится железо в воде, возникают те или иные визуальные признаки. В первом приближении по этим признакам можно определить, какой тип железа содержится в данной воде, и понять какой метод обезжелезивания нужно применять для очистки. Конечно же, окончательное и точное решение принимает специалист исходя из полного химического анализа очищаемой воды.

  • Двухвалентное, растворенное железо - самая распространенная проблема с водой, встречается в 70% случаев. Может ощущаться металлический привкус, и мутноватый вид. Вода из скважины поступает абсолютно прозрачная, но постояв 10-50 мин на открытом воздухе, она мутнеет и выпадает светло коричневый осадок. Это - то самое нерастворимое уже трехвалентное железо.
  • В случае с коллоидным железом наблюдается обратная картина. Вода из источника поступает уже мутная. Затем, постояв некоторое время в емкости от 1 часа до 3 дней, светлеет, и взвешенные коллоидные частицы оседают постепенно на дно, образуя осадок белого или коричневого цвета. Это явный признак коллоидного железа. В коллоидных частицах может находиться не только железо, но и минеральные соли, бактерии, органика. Коллоидные частицы сложнее очистить, чем обычное двухвалентное железо. В силу того, что коллоидные частицы имеют одинаковый заряд и отталкиваются друг от друга и не поддаются осаждению. По обычному анализу воды нельзя определить наличие коллоидного железа.
  • Органическое железо может себя ни как не проявлять, и определить его наличие можно только по исходному анализу воды. Проблематика органического железа в воде в том, что его достаточно трудно удалить до норм 0,3 мг/л. Ион железа сильными химическими связями встраивается в молекулу органики и удалить его сложно. При профессиональном подборе оборудования, реагентов и фильтрующих материалов, понимая происхождение проблемы, эту задачу можно эффективно решить.
  • Бактериальное железо в нашей десятилетней практике наблюдалось редко. Имеет место следующая интересная картина с железом. Вода после системы очистки от железа прозрачная и, постояв в емкости, не выпадает ржавый осадок. Но через 1-2 дня образуются мелкие коричневые хлопья размером 0,5-1 см в объеме. Например, в 12 литровом ведре и может быть до 10-20 штук расположенных колониями во всем объеме воды. Это явный признак наличия бактериального железа или железобактерий. Как правило, в такой воде превышено Общее Микробное Число (ОМЧ) более 50 КОЕ. Размерность КОЕ расшифровывается как колонии образующие единицы.


Какое нужно оборудование для безреагентной очистки воды от железа

Для каждого рассмотренного вида железа используется свое оборудование, фильтры и засыпные материалы. Поскольку растворенное или ионное или двухвалентное железо встречается в скважинах в 70 % случаев, рассмотрим, какое оборудование и материалы используются для удаления именно этого вида железа. Система безреагентного обезжелезивания воды состоит из четырех модулей:

Первая часть -это предварительный механический фильтр. Фильтрует крупные частицы более 10 микрон.

Вторая часть - это система напорной аэрации воды. Без системы аэрации удалить растворенное железо не возможно. Система аэрации состоит из специального компрессора AP-2 или LP-12, датчик потока Brio 2000 (пр-во Италия) или импульсный водосчетчик, , пластиковый баллон нужного размера, реле включения и отключения компрессора, клапан сброса лишнего воздуха.



Третья часть После аэрационной системы устанавливается сам фильтр обезжелезиватель. Состоит из пластикового баллона, армированного стекловолокном, дренажно-распределительная система, блок управления потоками воды, фильтрующий материал и гравийный поддерживающий слой. Пластиковый баллон подбирается индивидуально по требуемой производительности. Блок управления может быть автоматический или ручной. Фильтрационный материал является душой фильтра и подбирается специалистом исходя из полного анализа воды. Какие бывают фильтрующие материалы для очистки воды от железа можно посмотреть . Гравийная подложка это специально подготовленный кварцевый песок размером частиц 2-5 мм или 4-7 мм.



В конце системы обычно устанавливают окончательную фильтрацию в виде угольного картриджа. После такой системы на выходе имеем воду с концентрацией железа ниже 0,3 мг/л. Более подробно о принципе работы фильтра обезжелезивания можно посмотреть .

Реагентное обезжелезивание воды

Реагентное обезжелезивание используется реже, чем безреагентное. Реагенты для окисления применяются в случае высоких концентраций железа, марганца, органики, бактериальных загрязнений и сероводорода. Дело в том, что у кислорода, который используется в безреагентном обезжелезивании - низкая окисляющая способность по сравнению гипохлоритом натрия, перманганатом калия и озоном. Поэтому, если в анализе воды мы наблюдаем концентрацию железа выше 6-8 мг/л, наличие органических загрязнений, бактериального железа, то с большой вероятностью здесь нужно использовать реагентное обезжелезивание воды. Выбор реагента зависит от анализа воды и финансовых возможностей заказчика. Чаще всего используется гипохлорит натрия. Дозирование марганцовки устарело и практически не используется. Очистка воды от железа озонированием применяется редко в силу высокой стоимости. Состав оборудования при реагентной очистке отличается наличием дозирующего насоса и емкости с реагентом. В некоторых случаях используется аэрационная емкость больших размеров для увеличения площади и времени контакта реагента с очищаемой водой. На выходе системы очистки устанавливается угольный баллонный фильтр для удаления остаточного хлора.


12 причин оставить заявку у нас

Весь ценовой диапазон рынка водоочистки;

11 лет опыта работы;

Гарантия на оборудование 3 года;

Гарантия на качество воды на выходе 2 года;

Полное раскрытие комплектации до мелочей;

Бесплатный анализ воды до и после системы обезжелезивания;

Опыт работы со сложными водами в регионах России;

Наличие сервисного отдела и отдела по продажам расходных фильтрующих материалов;

Прямые поставки оборудования и расходных материалов от ведущих Американских, Европейских, Китайских и Российских производителей: Clack, Structural, Canature, Wave Сyber, Ranxin, Seko, Bayer и другие;

Консервация оборудования на зиму, регулярные акции и спецпредложения;

Анализ воды в аккредитованной лаборатории ИСВОД центр, с получением оригиналов анализов воды с печатью;

Для объектов по Пятницкому, Волоколамскому, Новорижскому, Рублевскому, Можайскому, Минскому, Киевскому, Калужскому, Ленинградскому, Дмитровскому, Варшавскому и Симферопольскому шоссе дополнительная скидка.

Какие материалы для очистки воды от железа выбрать

Сменные фильтрующие засыпки являются душой фильтра. От правильного их подбора зависит срок работы фильтра обезжелезивателя. По способу удаления железа материалы делятся на ионообменные и каталитические. Ионный способ применяется редко в силу проблематики окисления ионов железа внутри самой гранулы смолы. Этот процесс называется отравление смолы железом. Извлечь окисленное трехвалентное железо достаточно сложно. Ионный метод применяется для умягчения воды. Каталитический метод подразумевает химический процесс окисления железа на поверхности гранулы материала. Далее железо вымывается обратным потоком воды. В 90 % случаев применяют каталитический метод. В большинстве случаев подойдут такие материалы как Сорбент АС, Сорбент МС, Birm, МЖФ.

По способу производства материалы бывают природные - это полезные ископаемые, и синтетические. Яркий представитель природной загрузки - цеолит, диатомит, апоки, кизельгур и другие. Синтетические засыпные материалы производятся частично из природных компонентов нанесением на них каталитического материала - оксида марганца по специальной технологии. Самый распространенный катализатор Birm. Так же распространены МЖФ, Greensand. Подробнее обо всех используемых фильтрующих засыпках для удаления железа из воды смотрите ниже.

Обезжелезивание и деманганация воды. Как убрать железо из воды?

Обезжелезивание — удаление железа и марганца из воды — это сложная задача для быта и производства. Нет универсального метода на все случаи, который был бы при этом экономически оправдан на всех объектах. Если бы он был — мы бы все о нем знали. Однако, методов много и каждый из них применим в определенных пределах и, конечно, имеет свои недостатки. Большинство людей пишут мне: «Павел, железо в воде. Фирмы предлагают разные методы от 30 до 150 тысяч рублей. Кому верить? Что делать?»


Клапан управления обезжелезивателем

Сверху на фильтре устанавливают

Клапан управления представляет собой систему каналов, по которым движется вода, запорный механизм, направляющий воду по нужному на данном этапе цикла каналу и блок управления с электроприводом для автоматического клапана, либо ручку для ручного переключения режимов для ручного клапана управления.

Фильтры бывают трехцикловые для безреагентных обезжелезивателей, либо пятицикловые для реагентной промывки. Реагентная промывка — это не просто взрыхление загрузки, а пропускание через загрузку реагента (например, раствора перманганата калия) для более глубокой очистки загрузки и восстановления ее каталитических свойств.

Переключая режимы с помощью ручки, либо автоматически за счет электронного блока управления мы организуем промывку фильтра.

Во время промывки фильтра вода не поступает к потребителю, а выбрасывается в дренаж (канализацию).

Промывка происходит в несколько этапов, там есть свои важные нюансы. Рекомендую изучить

После завершения очередной промывки фильтр снова готов к работе. Загрузка фильтра при правильной эксплуатации обычно «живет» (работает) от 3-5 лет.

Окисление и фильтрация пиролюзитом (MnO2).

Этот метод прекрасно подходит для удаления небольшого количества двухвалентного железа Fe(OH)3 в простых условиях и для небольшого расхода воды. Высокий pH, отсутствие органики и сероводорода в воде — обязательные условия. Суть метода в том, чтo мы окисляем железо с помощью волшебного компонента загрузки фильтра без аэрации, без дозации, без озона, без реагентов — только обезжелезиватель с загрузкой: сорбент + пиролюзит .

Пиролюзит — это природный минерал. Диоксид марганца. Его применяют для производства батареек . Из него делают марганцовку (KMnO 4) и вообще он довольно широко применяется в химической промышленности. В водоподготовке пиролюзит MnO2 используется, как каталитический материал удаления железа, марганца, органический соединений, сероводорода, потому что пиролюзит является неплохим окислителем.

Пиролюзит в водоподготовке — материал уникальный. Почти все каталитические материалы сделаны с использованием пиролюзита:

BIRM — это легкий сложнопористый алюмосиликат с нанесением пиролюзита в качестве наружнего каталитического слоя. Идея — супер, но живет не долго и боится органики.

Greensand Plus — кварцевый песок с нанесением пиролюзита на поверхность крупиц. Работает только при постоянной дозации гипохлорита или промывке марганцовкой.

МЖФ, МСК, Pyrolox, Сорбент МС и множество других материалов — все это сделано с применением пиролюзита.


Обезжелезиватель на пиролюзите. Умягчитель — опция. Его может и не быть.

При этом пиролюзит — это минерал, содержащий 75-95% MnO2 , он поставляется гранулированным, подходящей фракции. Дешевый, но очень тяжелый. Для его промывки требуется быстрый поток воды. Чем больше диаметр колонны, тем больше требуется давление в системе для создания потока нужной скорости для ожижения загрузки.

Однако, пиролюзит можно использовать, как реагентную добавку к сорбенту МС для удаления без окисления небольшого количества железа и марганца. У Вас одна колонна — обезжелезиватель с загрузкой — сорбент + пиролюзит. Без реагентов. Без аэрации или другого вида окислителя. Эта система в некоторой степени уникальна. Никакой другой материал, кроме пиролюзита не способен годами окислять металлы растворенные в воде без активного окисления или реагентной регенерации. Потому что мы используем не продукты, содержащие пиролюзит (BIRM, Greensand, МЖФ и т.п.), а собственно, сам пиролюзит. В процессе эксплуатации он практически не расходуется, может немного «пылить» — давать серую воду — истираясь вымываться в водопровод в режиме фильтрации, но это касается не только пиролюзита, а всех вообще загрузок. Можно поставить угольный фильтр с картриджем на выходе, чтобы избежать попадания частиц пиролюзита в водопровод и я рекомендую устанавливать систему обратного осмоса для получения питьевой воды на кухне, т.к. при некоторых дополнительных условиях пиролюзит может отдавать марганец потребителю, возможно незначительное превышение ПДК.

Условия использования ПИРОЛЮЗИТА в качестве окислителя железа:

  • Железо Fe(OH)2 <3мг/л
  • Марганец Mn2+ <0,2мг/л
  • pH >6,8
  • Перманганатная окисляемость <2
  • Сероводород < 0,005

Если данные условия соблюдаются — я рекомендую использовать колонну 1354 для получения до 1,5 куб м чистой воды в час. Промывку фильтра следует делать раз в несколько дней. В случае с ручным клапаном допустимо растянуть цикл для промывки раз в неделю.

Стоимость обезжелезивателя на пиролюзите

Ионный обмен (Умягчение)

Для удаления различных примесей из воды, в том числе растворенных металлов и органических соединений уже более 50 лет используют ионообменные смолы — катиониты и аниониты в различных комбинациях, требующие регенерации поваренной солью NaCl в таблетках.

Процесс удаления солей и металлов на ионообменных смолах называется умягчением . Изначально этот метод применялся и сейчас применяется в основном для удаления солей жесткости (соли кальция, магния). Однако, сейчас есть большой выбор ионообменных смол и для удаления железа, а так же органики.

Ионообменные смолы — это очень обширная тема. Мы говорим здесь исключительно о бытовой водоочистке и я буду сообщать только то, что следует знать о смолах в ключе нашей задачи — очистить воду в частом доме, либо на малом производстве от растворенных металлов.

Что же представляет из себя Смола? Это синтетические шарики, изготовленные из полимерных материалов. Они очень мелкие, их много, они похожи на мелкую икру минтая, щуки или на «тобико» — икру летучей рыбы. Мы, монтажники водоочистки, даже ради забавы называем смолу «икрой» на профессиональном сленге.


Суть процесса умягчения принципиально отличается от обезжелезивания . Смолы не окисляют и не переводят растворенные вещества в твердую форму для последующего фильтрования, а замещают («впитывают») растворенные вещества в воде на катионы натрия, который не придает воде такого свойства, как жесткость. Общая солевая насыщенность воды при этом остается неизменной или даже возрастает. Это зависит от типа растворенных веществ, которые забирает смола.

Исходя из вышесказанного возникает важный параметр ионообменных смол — ионообменная емкость смолы. Емкость смолы подобна емкости электрической батарейки. Есть запас натрия, который в процессе ионного обмена постепенно расходуется, тем самым снижается способность смолы забирать из воды растворенные вещества. Когда заканчивается натрий — заканчивается и очистка — вода проходит через толщу смолы не изменяя своих свойств.

Мы заранее рассчитываем работу умягчителя таким образом, чтобы сделать регенрацию (промывку) смолы раствором поваренной соли до наступления ощутимого снижения емкости. Этот период называется в водоочистке фильтроциклом. О расчете количества смолы, соли для регенерации, фильтроцикла читайте в статье об умягчении.

Такие мультикомпонентные загрузки, как Экотар, Экомикс, FeroSoft, АПТ-2, Ionofer c различными индексами А, В, С и т.д. предназначены для удаления ионным путем растворенных солей, металлов, органических соединений, а также широкого спектра других веществ: тяжелые металлы, ионы аммония, железоорганические соединения, фосфор, кальций, кремний и многие другие.

Как я уже сказал — смола регенерируется с помощью таблетированной поваренной соли NaCl, соль продается на всех строительных рынках, в магазинах сантехники, стоит примерно 7$ за 30кг мешок. Расход соли определяется в основном количеством удаляемых веществ.

В среднем около 1 мешка соли в месяц уходит на умягчение воды.

Обратный осмос.

Системы обратного осмоса — это принципиально иной метод очистки воды. Здесь мы имеем дело с фильтрованием воды сквозь мембрану. Грубо говоря это сетка, через которую проходят молекулы воды, но не проходят молекулы солей жесткости и растворенных металлов. При этом задержанные молекулы не образуют осадка на поверхности мембраны, а сразу же сливаются в дренаж (канализацию). В процессе фильтрации в обратном осмосе вода разделяется на два потока — пермеат (очищенная)и концентрат (грязная вода).

В среднем на 1 куб.м. очищенной воды мы получаем полтора куба концентрата, который надо куда-то сливать.

Системы обратного осмоса эффективны при удалении растворенных металлов и солей жесткости. Они не замещают одни вещества другими, как ионообенные смолы, а реально очищают воду от примесей, в этом огромное преимущество обратного осмоса. Но это, пожалуй, самый дорогой процесс очистки воды и по причинам целесообразности его реже всего используют для удаления растворенного железа и марганца.

Однако, при высоких содержаниях растворенного двухвалетного Fe2+ железа и низком pH<7 осмос может быть весьма эффективен для удаления 20 и выше мг, потому что молекулы железа гораздо крупнее пор мембраны — их легко фильтровать.

Рассказать друзьям

Преобладающее количество производимого хлорного железа используется для очистки промышленных и сточных вод.

Проблема очистки промышленных и сточных вод является одной из важнейших задач охраны окружающей среды. Коагуляция - один из распространённых методов очистки сточных вод. Сущность метода коагуляции заключается во взаимодействии веществ, загрязняющих стоки, с минеральными коагулянтами. В качестве коагулянтов чаще всего используют хлорное железо , которое в результате гидролиза образует малорастворимый гидроксид железа Fe(OH) 3 . В процессе образования данного гидроксида захватываются неорганические и органические примеси с образованием рыхлых хлопьев, которые можно легко удалить из очищаемых стоков.Образующиеся хлопья размером 0,5-3,0 мм и плотностью 1001-1100 г/л имеют очень большую поверхность с хорошей сорбционной активностью. В процессе их образования и седиментации в структуру включаются взвешенные вещества (ил, клетки планктона, крупные микроорганизмы, остатки растений и т. п.), коллоидные частицы и та часть ионов загрязнений, которые ассоциированы на поверхности этих частиц.Высокая скорость осаждения хлопьев гидроксида обуславливает преимущество хлорного железа перед сернокислым алюминием. Процесс осаждения шлама при помощи хлорного железа протекает быстрее и глубже, кроме того, хлорное железо благоприятно влияет на биохимическое разложение шлама. Расход хлорного железа составляет 30 г на куб. метр сточных вод.Химическая очистка сточных вод уменьшает содержание нерастворимых примесей до 95% и растворимых до 25%.

При проведении очистки сточных вод микроорганизмы и ядовитые соединения, содержащиеся в водах, разрушаются гипохлоритом натрия .

Гипохлорит натрия можно использовать для обработки сточных вод, содержащих соли аммония, фенольные соединения, ртуть. Степень очистки достигает 99,9%.

В результате проведенных исследований эффективности применяемых в пищевой промышленности дезинфицирующих средств гипохлорит натрия был оценен как наиболее эффективный и экономичный продукт. Он показал высокую эффективность воздействия на практически все виды растительных клеток, спор и бактерий. Обычно используют раствор с содержанием 30 - 40 мг/л активного хлора.

Хлорное железо применяют также в качестве катализатора в процессах органического синтеза, окисления нефтяных битумов, при получении термостойких смол. Он является энергичным хлорирующим агентом, поэтому может использоваться для избирательного извлечения отдельных компонентов руд.

Водные растворы хлорного железа обладают мягкими травильными свойствами, поэтому их применяют для травления печатных плат, медной фольги и металлических деталей перед нанесением гальванических покрытий.

Хорошо известно применение хлорного железа в качестве добавки к портландцементу для ускорения процесса схватывания. Водоцементное отношение (В/Ц) рекомендуется в пределах 0,4 - 0,5. Добавка хлорного железа позволяет повышать значение В/Ц. Добавка хлорного железа повышает прочность бетона.

Технические характеристики раствора хлорного железа.

1. Массовая доля хлорного железа - не менее 40 %;

2. Плотность раствора при 20 °С - не менее 1,41 г/куб. см;

3. Массовая доля хлористого железа - не более 1 %;

4. Массовая доля нерастворимых в воде веществ - не более 2 %;

Сульфат железа - химическое вещество, представляющее собой соль серной кислоты и 2-х валентного железа. При объединении с семью молекулами воды образовывается соединение, которое в быту называют железным купоросом.

Это химическое соединение также имеет другие различные названия, под которыми оно продается и используется в разных областях - сернокислое железо, железный купорос, железная соль серной кислоты, железа(II) тетраоксосульфат, железо(II) сернокислое.

В природе сульфат железа имеет аналог - минерал, который называется мелантерит.

Сульфат железа был открыт человечеством очень давно, способы его применения содержатся в древнегреческих текстах полуторатысячной давности. Сегодня его применяют в различных областях промышленности, медицины, ветеринарии, сельского хозяйства. Сфера его использования в различных производствах чрезвычайно широка, поэтому ниже приведем те области, где он применяется очень часто, а его замена на иные аналоги ухудшает качество лекарства или изделия.

Качественные характеристики сульфата железа

Качество сульфата железа определяется согласно норм, устанавливаемых ГОСТом 6981-084 Относительно физико-химических характеристик для промышленно изготовленного сульфата железа для 1-го сорта массовая доля:

  • сульфата железа должна составлять не менее 52%;
  • свободной серной кислоты должна составлять не более 0,3%;
  • веществ, которые не растворяются в воде, не должна превышать 0,2%.

Для второго сорта массовая доля:

  • сульфата железа должна составлять не меньше 47%;
  • свободной серной кислоты должна составлять не более 1%;
  • веществ, которые не растворяются в воде не должна превышать 1%.

Применение в сельском хозяйстве

В сельском хозяйстве сульфат железа применяют для:

  • химической мелиорации различных почв;
  • для уничтожения лишайников и мхов;
  • как препарат успешно уничтожающий споры различных грибков;
  • для борьбы с слизнями и другими вредителями садовых и лесных насаждений;
  • лечения растений, заболевших хлорозом.

Также в сельхоз хозяйствах сульфат железа применяют для увеличения продуктивности наращивания зеленой массы, поскольку вещество является одной из составных частей многих окислительных ферментов, которые играют важную роль в процессах дыхания растений. Применяют железный купорос в качестве удобрения при недостатке железа в почвах.

Хорошие результаты дает внекорневая подкормка смородины и клубники водным раствором сульфата железа, приготовленным из расчета от пяти до десяти граммов препарата на десять литров воды.

Часто железный купорос применяют в комплексе с органическими удобрениями, внося в грунт смесь из ста граммов сульфата железа и десяти килограммов органики.

Хорошо знают полезные качества сульфата железа те, кто занимается виноградарством. Весенние опрыскивание раствором этого вещества грунта вокруг виноградных лоз уничтожает грибки и бактерии, а воздействие на сами лозы замедляет развитие почек, что помогает растению легче перенести ранние заморозки. Обрабатывают железным купоросом и черенки лоз - они лучше приживаются и прорастают.

Нельзя обрабатывать раствором железного купороса листья виноградных лоз - раствор может вызвать ожоги.

Применяют сернистокислое железо и для обработки семечковых садовых деревьев, чтобы уничтожить вредные лишайники и мхи, насекомых. Для этого готовят раствор из расчета 500 грамм купороса на десять литров воды. Для кустарников, а также для косточковых культур концентрация несколько ниже - триста грамм на десять литров воды.

Важно запомнить, что нельзя допускать обработок железным купоросом, если проводилась обработка известью - в этих случаях применяют медный купорос.

Эффективен сульфат железа при лечении хлороза - для этого в почву вокруг лозы вносят раствор из расчета грамм железного купороса, двадцать грамм аскорбиновой или лимонной кислоты на десять литров воды. Для борьбы с хлорозом гортензий, других цветов используют раствор из тридцати грамм сульфата железа на десять литров воды и опрыскивают заболевшие растения в перерывом в шесть дней до полного выздоровления.

Используют сернокислое железо и в ветеринарии. При выпаивании поросят и телят.

Применение сульфата железа в медицине

В фармацевтике препараты с применением сульфата железа относят к двум клинико-фармакологическим группам:

  • стимуляторы гемопоэза;
  • препараты, содержащие микро- и макроэлементы.

Применяют для лечения железодефицитных анемий, как антианемические лекарства при недоставке железа для нормального процесса создания миоглобина, гемоглобина, некоторых ферментов в органах кроветворения для стимулирования эритропоэза.

Сульфат железа в медицине применяют с глубокой древности. Его использовали для лечения «бледной немочи» на Руси, древнегреческий врач Мелампас лечил им наследного принца Ификласа Тезалия полторы тысячи лет тому назад, Ибн-Сина применял для борьбы с патологической худобой и для улучшения цвета кожи лица, как укрепляющее средство при водянке рекомендовал Парацельс. В начале XIX века лучшим средством для лечения «бледной немочи», малокровия, общей слабости считались Блодиевые пилюли, предложенные французским врачом Pierre Blaud - они состояли из сульфата железа и карбоната калия.

Сегодня препараты с сульфатом железа применяют при таких заболеваниях, как

  • дефицитная анемия;
  • период грудного кормления;
  • секреторная недостаточность при хроническом гастрите;
  • период активного роста;
  • беременность;
  • неполноценное питание;
  • после резекции желудка;
  • язва двенадцатиперстной кишки;
  • язва желудка;
  • недоношенность у детей;
  • снижение сопротивляемости организма;
  • кровотечения и кровопотери.

Хотя препараты сульфата железа продаются в аптеках без предъявления рецепта, все-таки существуют некоторые ограничения по их использованию. Среди противопоказаний:

  • гемохроматоз;
  • гиперчувствительность;
  • гемосидероз;
  • поздняя порфирия кожи;
  • талассемия;
  • хронический гемолиз;
  • заболевания ЖКТ, нарушающие всасывание железа;
  • сидеробластная анемия;
  • гемолитическая и апластическая анемия;
  • различные анемии, которые не связаны с недостатком железа.

Препараты назначают больным, особенно детям, в дозировках с учетом перерасчёта на активное железо.

Лекарства с сульфатом железа запрещается назначать при частых гемотрансфузиях.

Лекарства с использованием железа представлены в таблице.

Интересно отметить, что свойства сульфата железа относительно улучшения процессов переноса кислорода кровью в мышцы вызвали интерес к этому веществу со стороны спортивных медиков. Однако, тщательное изучение спортивных результатов атлетами, употреблявшими препарат как пищевую добавку, не выявили его эффективности.

Использование сульфата железа в строительстве

Это химическое вещество исстари применяли для увеличения долговременности деревянных построек.

Начиная с античных греков люди искали материалы, которые помогали бы защитить древесину домов от гниения. Они покрывали их растительными маслами, затем различными красками и лаками. Эффект, в лучшем случае, был не долговременным. Краски и лаки отшелушивались и в этих местах быстро начинали развиваться процессы гниения.

Много более эффективным оказался путь уничтожения бактерий и грибков, разрушающих древесину при помощи различных химических веществ. Сегодня такой метод называется биоцидным. В его основе - пропитка древесины импрегнантами (антисептическими растворами) Среди наиболее эффективных импрегнантов - железный купорос.

Для защиты древесины раствор железного купороса:

  • наносят на деревянные поверхности малярными кистями;
  • наносят на деревянные детали при помощи распыления распылителем;
  • деревянные конструкции погружают в раствор сульфата железа полностью, при этом для повышения эффективности производят их прогревание в растворе.

Еще больший позитивный эффект дает промышленное обрабатывание сернокислым железом деревянных конструкций. Его выполняют одним из ниже приведенных методов:

  • пропитывают раствором сульфата железа в автоклавах;
  • при помощи диффузионной пропитки, в ходе которой на деревянные детали наносят слой пастообразного материала, который содержит сернокислое железо, постепенно поникающее в материал полностью пропитывая его структуру.

В сельских местностях скандинавских стран и по сегодня применяют старинный специальный состав для окрашивания домов и заборов с целью их защиты от гниения на основе сульфата железа. В состав входят:

  • вода 9 литров;
  • купорос железный - 1,56 килограмма;
  • мука - 0,72 килограмма;
  • известковый пигмент сухой - 1,56 килограмма;
  • соль - 0,36 килограмма.

В муку постепенно вводят 1/3 части воды и размешивают до получения клейстера, который процеживают и затем нагревают постоянно тщательно размешивая, а затем вводят соль, известковый пигмент и железный купорос - после их полного растворения добавляют остаток воды, предварительно нагрев его.

В случае желания придания краске какого-либо цвета - в неё добавляют соответствующие пигменты. Краску на деревянные поверхности наносят без грунтовки и в два слоя. Расход краски при этом составляет 0,3 килограмма на квадратный метр. Минимальный срок эксплуатации таких поверхностей при атмосферных условиях Норвегии, северных областей Финляндии - двадцать лет.

К достоинствам пропиток на основе сульфата железа строители относят его хорошую водорастворимость (в холодной воде можно приготовить 25% раствор, в горячей - 55%), а также то, что такие растворы не корродируют железные детали.

При применении растворов сульфата железа в качестве антисептика техника безопасности требует выполнения всех работ в резиновых перчатках и в респираторе.

В России был изобретен и забинтован метод изготовления древесно-волокнистых и древесно-стружечных плит для строительной и мебельной промышленности из древесных материалов, содержащих целлюлозу и лигнин путем их поэтапной обработки. На одном из этапов основным элементом сложной технологии выступает такой модифицирующий агент, как сульфат железа, который вводят в разогретую паром древесную массу при t=190°C, а затем прессуют в плиты при t=190°C.

Поскольку в данном методе не используются вещества фенольной природы - получаются экологически безопасные плиты повышенной прочности, не подверженные процессам гниения и не выделяющие при эксплуатации формальдегидов. Такие плиты также просты в обработке, влагоустойчивы, мало горючи.

Модифицирующая добавка из сульфата железа одновременно значительно повышает прочность плиточного материала, укорачивает время, нужное для изготовления плит. В строительной промышленности сульфат железа применяют и при изготовлении клинкерных смесей, сухих штукатурок, цементов для удаления ионов шестивалентного хрома.

Применение железного купороса в мебельной промышленности

Протравливание древесины выполняет функцию не только защиты, но и придание ей нового этетического вида. Получаемый в результате цвет изделия из дерева зависит от вида древесных пород. Так при протравливании сульфатом железа:

  • в концентрации от 0,5% до 2% древесина дуба окрашивается в темный, почти черный цвет;

  • в концентрации от 2% до 4% древесина бука приобретает коричневый цвет;
  • в концентрации 4% древесина березы приобретает желто-коричневый цвет;
  • в концентрациях от 2% до 4% древесина сосны приобретает серо-коричневый цвет.

Применение сульфата железа в легкой промышленности

В этой области экономики применяют сульфат железа - один из основных компонентов технологии в производстве чернил, протравливания тканей, окрашивания изделий из кожи.

Еще в пятнадцатом веке во Франции был разработан метод окрашивания кожи для книжных переплетов составом на основе сульфата железа и галловых орешков с содой. Таким образом, добивались получения тонкой кожи равномерно окрашенной в темно-серый цвет. В основе крашения при помощи сернокислого железа лежит химический процесс окисления природных таннидов, входящих в состав кожи, в результате чего образуются окрашенные соединения, не растворяющиеся в воде. К недостаткам этого старинного метода можно отнести повреждаемость минеральной солью более тонких участков в случае неравномерной выделки кожи.

Появление в XIX синтетических красителей и бурное последующее развитие этой области химической промышленности не привело к вытеснению сульфата железа из технологии окрашивания кожи.

Оказалось, что такие красители без применения зарекомендовавшего себя сульфата железа во многих случаях, особенно при обработке хромовой кожи, приводит к неравномерности окрашивания, визуально резко выявляет ранее незаметные дефекты. Сульфат железа оказался незаменим при производстве высококачественных кож.

Использование железного купороса при изготовлении красок

Сернокислое железо применяют при производстве синтетических железооксидных пигментов, которые обуславливают цвет красок.

Путем реакции между кальцинированной содой и железным купоросом в присутствии кислорода воздуха (иногда заменяют бертолетовой солью) получают пигмент «марс желтый». Этот синтетический пигмент применяют для изготовления художественных красок и материалов для покраски древесины. Приготовленный в соотношении 1:8 с наполнителем такой пигмент называется «синтетической охрой».

Пигмент «марс красный». Его термическим способом получают из сульфата железа. Сперва железный купорос обезвоживают, подвергая его нагреву до 400°С, а затем прокаливают при температурных режимах в диапазоне от 700°С до 825°С. Оттенки полученного пигмента зависимы от качества технологии изготовления и могут быть от оранжево-красного до пурпурного и малинового, от розового до сиреневых оттенков. Цвет определяется размером м формой получаемых кристаллов пигмента, для светлых цветом размер составляет от 0,35 мкм до 0,45 мкм, а у темных оттенков - 2,5 мкм. У светлых цветов кристаллы имеют игольчатую форму частиц, а у темных - пластинчатую.

Пигмент «марс красный» очень востребован - его используют для производства различных эмалей и красок, окрашивания пластмасс, бумаги, линолеума. Обезвоживание железного купороса и его прокаливание выполняют во вращающихся печах.

Цвет получаемого пигмента также зависим от температур при изготовлении. При температурах от 700°С до 725°С получают пигменты, имеющие желтоватый оттенок, при температурах от 725°С до 825°С получают пигменты, имеющие синеватый оттенок.

Получать различные оттенки при изготовлении пигментов на основе сульфата железа можно и введением добавок, например, применение хлорида натри придает фиолетовый оттенок получаемому пигменту.

Пигмент "марс коричневый" производят из сульфата железа методом его осаждения в присутствии сульфата марганца аммиаком. Образовавшийся осадок отделяют и затем в щелочной среде окисляют воздухом, промывают, высушивают с последующим прокаливанием при температурах от 180°С до 200°С.

Применение сульфата железа при воронении стали

Воронение стали - это технологический процесс получения на поверхности стали оксидной пленки, которая не только защищает сталь, но и придает ей красивый вид. Процесс воронения производят в кислотных или же щелочных растворах, в состав которых входит сульфат железа.

Желая получить пленку голубоватого оттенка, применяют такой раствор:

  • сульфат железа - 30 килограмм;
  • соляная кислота - 30 килограмм;
  • азотно-кислая ртуть - 30 килограмм;
  • спирт этиловый - 120 килограмм.

Раствор нагревают до 20°С и обрабатывают в нем стальное изделие в течение двадцати минут.

При необходимости получить темно-красный оттенок воронения используют следующий раствор:

  • сульфат железа - 3 килограмма;
  • этиловый спирт - 3 килограмма;
  • вода - 100 килограмм;
  • азотно-кислая медь - 1,2 килограмма.

Раствор нагревают до 25°С и мягкой кистью смачивают поверхность стального изделия, дают высохнуть и смачивают снова. Процесс повторяют несколько раз до получения желаемого оттенка красного цвета.

При воронении с целью получения темно-красных оттенков иногда образуются ржавые пятна - их удаляют осторожно влажной кистью и раствор наносят снова.

Для закрепления на поверхности образовавшейся защитной пленки затем обрабатывают одним их 2-х методов.

  1. Метод 1. Длительно промывают в поточной воде, а затем пять минут кипятят в растворе из трех килограммов мыла на сто литров воды.
  2. Метод 2. Длительно промывают в горячей воде, а затем на 2 минуты погружают в нагретый до 70°С раствор бихромата натрия (12 килограмм на сто литров воды).

На заключительном этапе воронения стальное изделие высушивают, а затем тщательно смазывают каким-либо видом машинного масла.

Применение сульфата железа для окраски шерсти

Железный купорос применяют в процессах окрашивания шерсти, получаемой от овец, в качестве потравы, то есть для закрепления цвета окрашиваемой шерсти таким образом, чтобы после стирки изделия из неё не были подвержены линьке. К недостаткам этого метода, который использовался с давних времен, можно отнести приобретение изделием после обработки сульфатом железа немного желтоватого оттенка.

Применение сульфата железа в гальванопластике

В этой области промышленного производства сульфат железа применяют при изготовлении пресс форм и матриц. Точность размеров формы, отсутствие шероховатости при гальванопластике, в ходе которой полученные металлические копии отделяются от модели, служащей основой для осаждения металла, после завершения процесса играет очень большую роль. При этом важно, чтобы поверхность модели, слои, наносимые для выравнивания, имели токопроводящие свойства. Для выполнения эти технологических требований применяют сернокислые электролиты, в состав которых входит железный купорос. Процесс гальванопластики проводят под постоянным контролем.

Гальванопластика с применением сульфата железа - достаточно длительный процесс. Время осаждения толстых слоев металла может растянуться на несколько недель. Но время ожидания окупается высокими качествами получаемых поверхностей и соблюдением точности размеров.

Поверхности моделей перед нанесением электролитов тщательно моют и обезжиривают, а затем полностью высушивают.

Применение сульфата железа для изготовления чернил

Использование железного купороса для приготовления чернил - едва ли не самый старинный метод получения растворов для нанесения изображений на бумагу. В основе - процессы приобретения черного цвета при смешении растворов танинов и сульфата меди.

Сульфат железа - неотъемлемый компонент старинных составов для тайнописи, изображения. Надписи наносились на бумагу, полотно 1% раствором танина 0,1 М, а потом в нужный момент протирались 0,1 М раствором сульфата железа, и надпись становилась видимой.

Меры безопасности при работе с сульфатом железа

К сульфату железа не предъявляются особые меры в отношении пожаробезопасности. Это вещество относится к негорючим, оно не взрывоопасно. Однако по отношению к здоровью, оно представляет некоторую опасность при небрежном обращении.

Это химическое вещества относится к третьему классу токсичности, в котором объединены материалы умеренно опасные для здоровья человека.

При использовании сульфата не допускается превышение в воздухе рабочих зон аэрозолей сернокислого железа в концентрациях выше предельно допустимых, которая составляет 2 мг/м².

Известен людям еще с древности: старинные предметы быта, выполненные из этого материала, ученые приписывают к IV тысячелетию до нашей эры.

Жизнь человека невозможно представить без железа. Считается, что железо используется для промышленных нужд чаще, чем другие металлы. Из него изготавливают важнейшие конструкции. Также железо в небольших количествах содержится в крови. Именно содержание двадцать шестого элемента окрашивает кровь в красный цвет.

Физические свойства железа

В кислороде железо горит, образуя оксид:

3Fe + 2O₂ = Fe₃O₄.

При нагревании железо может реагировать с неметаллами:

Также при температуре 700-900 °С вступает в реакцию с водяным паром:

3Fe + 4H₂O = Fe₃O₄ + 4H₂.

Соединения железа

Как известно, у оксидов железа есть ионы с двумя степенями окисления: +2 и + 3. Знать это крайне важно, ведь для разных элементов будут проводиться совершенно разные качественные реакции.

Качественные реакции на железо

Качественная реакция нужна для того, чтобы без труда можно было определить присутствие ионов одного вещества в растворах или примесях другого. Рассмотрим качественные реакции двухвалентного и трехвалентного железа.

Качественные реакции на железо (III)

Определить содержание ионов трехвалентного железа в растворе можно с помощью щелочи. При положительном результате образуется основание - гидроксид железа (III) Fe(OH)₃.


Гидроксид железа (III) Fe(OH)₃

Полученное вещество нерастворимо в воде и имеет бурую окраску. Именно бурый осадок может свидетельствовать о наличии ионов трехвалентного железа в растворе:

Fe­Cl₃ + 3NaOH = Fe(OH)₃↓+ 3Na­Cl.

Также определить ионы Fe(III) можно с помощью K₃.

Раствор хлорида железа смешивают с желтоватым раствором кровяной соли. В результате можно увидеть красивый синеватый осадок, который и будет свидетельствовать о том, что в растворе присутствуют ионы трехвалентного железа. вы найдете зрелищные опыты на изучение свойств железа.

Качественные реакции на железо (II)

Ионы Fe²⁺ вступают в реакцию с красной кровяной солью K₄. Если при добавлении соли образуется синеватый осадок, то эти ионы присутствуют в растворе.




Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.