Не имеют кристаллической структуры. Основные характеристики кристаллических структур

Рис. 17. Снежинки-скелетные кристаллы льда

Из опыта известно, что в кристаллическом веществе физические свойства одинаковы в параллельных направлениях, а представление о строении веществ требует, чтобы слагающие кристалл частицы (молекулы, атомы или ионы) находились одна от другой на некоторых конечных расстояниях. Исходя из этих предположений, возможно построить геометрическую схему строения кристаллического . Для этого положение каждой слагающей частицы можно отметить точкой. Вся кристаллическая постройка представится тогда системою точек, закономерно расположенных в пространстве, причем для любых параллельных направлений расстояния между точками будут одинаковыми. Такое правильное расположение точек в пространстве называют

пространственной решеткой, а если каждая точка представляет положение атома, иона или молекулы в кристалле - кристаллической решеткой.

Построение пространственной решетки можно себе представить следующим образом.

А 0 (рис. 18) обозначает центр атома или иона. Пусть ближайший к ней такой же центр обозначается точкой Ль тогда, на основании однородности кристаллического , на расстоянии А 1 А 2 = А 0 А 1 должен находиться центр А 2 ; продолжая это рассуждение далее, можно получить ряд точек: А 0 , А 1 , А 2 , А 3 …

Положим, что ближайшая точка к А 0 в другом направлении будетR 0 , тогда должна существовать частица S 0 на расстоянии R 0 S 0 = Л 0 R 0 и т. д., т. е. получится другой ряд одинаковых точекА 0 , R 0 , S 0 … Если через R 0 , S 0 и т. п. провести линии, параллельные A 0 , A 1 , A 2 , получатся одинаковые ряды R 0 , R 1 , R 2 , S 0 , S 1 , S 2 … и т. д

Рис. 18. Пространственная решетка

Врезультате сделанного построения получилась сетка, узлыкоторой соответствуют центрам частиц, слагающих кристалл.

Если представить себе, что в каждой точке В 0, Со и т. д. восстановлена такая же сетка, как и в A 0 , в результате этого построения получится пространственная решетка, которая в известном смысле и будет выражать геометрическое строение кристаллического .

Кристаллы это что

Теория пространственных решеток, созданная великим русским кристаллографом Е. С. Федоровым, получила блестящее подтверждение при исследовании структуры кристаллов посредством рентгеновских лучей. Эти исследования дают не только картины пространственных решеток, но и точные длины промежутков между частицами, находящимися в их узлах.

Рис. 19. Структура алмаза

При этом выяснилось, что существует несколько типов пространственных решеток, отличающихся как характером расположения частиц, так и химической природой их.

Отметим следующие типы пространственных решеток:

Атомные структурные решетки. В узлах этих решеток расположены атомы каких-либо веществ или элемента, соединяющиеся непосредственно между собою в кристаллическую решетку. Такого типа решетка характерна для алмаза, цинковой обманки и некоторых других минералов (см. рис. 19 и 20).

Ионные структурные решетки. В узлах этих решеток расположены ионы, т. е. атомы, имеющие положительный или отрицательный заряд.

Ионные решетки обычны для неорганических соединений, например галогенов щелочных металлов, силикатов и пр.

Прекрасным примером является решетка каменной соли (NaCl) (рис. 21). В ней ионы натрия (Na) по трем взаимно перпендикулярным направлениям чередуются с ионами хлора (Сl) через промежутки, равные 0,28 миллимикрона.

Рис. 20. Структура цинковой обманки

В кристаллических веществах с подобной структурой промежутки между атомами в молекуле равны промежуткам между молекулами, и само понятие молекулы теряет смысл для таких кристаллов. На рис. 20 каждый ион натрия имеет

сверху, снизу, справа, слева, спереди и сзади на равных от него расстояниях по одному иону хлора, которые принадлежат как к данной «молекуле», так и к соседним «молекулам», и нельзя сказать, с каким именно ионом хлора из этих шести составляет молекулу или составлял бы ее при переходе в газообразное состояние.

Кроме описанных выше типов, существуют молекулярные структурные решетки, в узлах которых находятся не атомы или ионы, а обособленные, электрически нейтральные молекулы. Молекулярные решетки особенно характерны для различных органических соединений или, например, для «сухого льда» - кристаллической СO 2 .

Рис. 21. Кристаллическая решетка каменной соли

Слабые («остаточные») связи между структурными единицами таких решеток обусловливают малую механическую прочность подобных решеток, их низкие температуры плавления и кипения. Существуют и такие кристаллы, в которых сочетаются различные типы решеток. В одних направлениях связи частиц являются ионными (валентными), а в других молекулярными (остаточными). Такое строение приводит к различной механической прочности в разных направлениях, обусловливая резкую анизотропию механических свойств. Так, кристаллы молибденита (MoS 2) легко раскалываются по направлению пинакоида (0001) и придают кристаллам этого минерала чешуйчатый облик, подобно кристаллам графита, где обнаруживается сходная структура. Причиной малой механической прочности в направлении перпендикулярном (0001) является отсутствие в этом направлении ионных связей. Целостность решетки здесь удерживается только связями молекулярного (остаточного) характера.

Принимая во внимание все изложенное выше, легко провести параллель между внутренней структурой аморфного вещества, с одной стороны, и кристаллического, с другой:

1.В аморфном веществе частицы располагаются в беспорядке, как бы закрепляя частично хаотическое состояние жидкости; поэтому некоторые исследователи называют , например , переохлажденными жидкостями.

2.В кристаллическом веществе частицы располагаются в стройном порядке и занимают определенное положение в узлах пространственной решетки.

Различие между кристаллическим и стекловатым (аморфным) веществом можно сравнить с тем различием, которое имеется между дисциплинированной воинской частью и рассеянной толпой. Естественно, что кристаллическое состояние более устойчиво, чем аморфное, и аморфное вещество будет легче растворяться, химически реагировать или плавиться. Природные всегда имеют тенденцию приобретать кристаллическое строение, «раскристаллизовываться», например (аморфный кремнезем) со временем переходит в халцедон - кристаллический кремнезем.

Вещество в кристаллическом состоянии обычно занимает несколько меньший объем, чем в аморфном виде, и имеет больший удельный вес; например альбит - полевой шпат состава NaAlSi 3 O 8 в аморфном состоянии занимает 10 куб. единиц, а в кристаллическом-только 9; 1 см 3 кристаллического кремнезема (кварца) весит 2,54 г, а такой же объем стекловатого кремнезема (сплавленного кварца) - только 2,22 г. Особый случай представляет лед, имеющий меньший удельный вес, чем , взятая в том же количестве.

ИССЛЕДОВАНИЕ КРИСТАЛЛОВ РЕНТГЕНОВСКИМИ ЛУЧАМИ

Вопрос о причинах закономерности в распределении физических свойств в кристаллическом веществе, вопрос о внутренней структуре кристаллов впервые пытался разрешить М. В. в 1749 г. на примере селитры. Этот вопрос затем был более широко разработан уже в конце XVIII в. французским кристаллографом Аюи. Аюи высказал предположение, что каждому веществу свойственна определенная кристаллическая форма. Это положение было в дальнейшем опровергнуто обнаружением явлений изоморфизма и полиморфизма. Указанные явления, играющие большую роль в минералогии, будут рассмотрены нами несколько позже.

Благодаря работам русского кристаллографа Е. С. Федорова и некоторых других кристаллографов, теория пространственных решеток, кратко изложенная в предыдущей главе, была разработана математически, и на основании исследования формы кристаллов были выведены возможные типы пространственных решеток; но только в XX в., благодаря исследованию кристаллов рентгеновскими лучами, эта теория была проверена на опыте и блестяще подтвердилась. Целому ряду физиков: Лауэ, Брэггам, Г. В. Вульфу и др. удалось, используя теорию пространственных решеток, доказать совершенно точно, что в узлах кристаллических решеток находятся в одних случаях атомы, а в других молекулы или ионы.

Открытые Рентгеном в 1895 г. лучи, носящие его имя, представляют один из видов лучистой энергии и по многим свойствам напоминают лучи света, отличаясь от них только длиной волны, которая в несколько тысяч раз меньше длины световых волн.

Рис. 22. Схема получения рентгенограммы кристалла по методу Лауэ:
А - рентгеновская трубка; В - диафрагма; С - кристалл; D - фотопластинка

В 1912 г. Лауэ воспользовался кристаллом, где атомы расположены по пространственной решетке, как дифракционной решеткой для получения интерференции рентгеновских лучей. В поставленном им исследовании узкий пучок параллельных рентгеновских лучей (рис. 22) пропускался через тонкий кристалл цинковой обманки С. На некотором расстоянии от кристалла и пер пендикулярно к пучку лучей была помещена фотографическая пластинка D, защищенная от непосредственного действия боковых рентгеновских лучей и от дневного света свинцовыми экранами.

При продолжительной выдержке в течение нескольких часов экспериментаторы получили картину, сходную с рис. 23.

Для световых лучей, обладающих сравнительно с размерами атомов большой длиной волны, атомные сетки пространственной решетки играют роль практически сплошных плоскостей, и световые лучи полностью отражаются от поверхности кристалла. Гораздо более короткие рентгеновские лучи, отраженные от многочисленных атомных сеток, расположенных на определенных расстояниях друг от друга, идя по одному и тому же направлению, будут интерферировать, то ослабляя, то усиливая друг друга. На фотографической пластинке, поставленной на их пути, усиленные лучи дадут при продолжительной экспозиции черные пятна, расположенные закономерно, в тесной связи с внутренним строением кристалла, т. е. с его атомной сеткой и с особенностями расположенных в ней отдельных атомов.

Если взять пластинку, вырезанную из кристалла в определенном кристаллографическом направлении, и произвести с ней тот жеопыт, то на рентгенограмме будет виден узор, соответствующий симметрии строения кристалла.

Более плотным атомным сеткам соответствуют наиболее темные пятна. Редко усаженные атомами грани дают слабые точки или почти не дают их. Центральное пятно на такой рентгенограмме получается от рентгеновских лучей, прошедших через пластинку

Рис. 23. Рентгенография кристалла каменной соли по оси 4-го порядка

по прямому пути; остальные пятна образуют лучи, отраженные от атомных сеток.

На рис. 23 изображена рентгенофотография кристалла каменной соли, из которого была вырезана пластинка около 3 мм толщиной, параллельная грани куба. Посредине видно большое пятно - след центрального пучка лучей.

Расположение мелких пятен симметрично и указывает на существование оси симметрии 4-го порядка и четырех плоскостей симметрии.

Вторая иллюстрация (рис. 24) изображает рентгенограмму кристалла кальцита. Снимок сделан в направлении оси симметрии 3-го порядка. Буквами О обозначены концы осей симметрии 2-го порядка.

В настоящее время для исследования структуры кристаллических тел пользуются разными методами. Существенной особенностью метода Лауэ, кратко описанного выше, является применение только крупных кристаллов, точно ориентированных по отношению к проходящему пучку рентгеновских лучей.

При невозможности пользоваться крупными кристаллами обычно применяется «метод порошков» (метод Дебая-Шерера). Громадное преимущество этого метода в том, что для него не требуется крупных кристаллов. Перед исследованием испытуемое вещество в тонко измельченном состоянии обычно спрессовывается в небольшой столбик. Этим методом можно исследовать не только спрессованные порошки, но и вести работу над готовыми образцами металлов в виде проволоки, если кристаллики их достаточно мелки.

При наличии большого количества кристаллов отражение может произойти от любой грани каждого кристалла. Поэтому на рентгенограмме, полученной по «методу порошков», обычно получается ряд линий, дающих характеристику исследуемого вещества.

Благодаря применению рентгеновских лучей для исследования кристаллов, наконец, была получена возможность проникнуть в область действительного расположения молекул, ионов и атомов внутри кристаллов и определить не только форму атомной решетки, но и расстояния между частицами, ее составляющими.

Изучение структуры кристаллов при помощи рентгеновских лучей позволило определить кажущиеся размеры ионов, входящих в состав данного кристалла. Метод определения величины радиуса иона или, как обычно говорят, ионного радиуса будет ясен из следующего примера. Исследование такого рода кристаллов как MgO, MgS и MgSe, с одной стороны, и MnO, MnS и MnSe, с другой, дало следующие межионные расстояния:

Для

MgO -2,10 Å МnО - 2,24 Å

MgS - 2,60 Å и MnS - 2,59 Å

MgSe - 2,73 Å MnSa - 2,73 Å,

где Å-обозначает величину „ангстрем», равную одной десятимиллионной миллиметра.

Сравнение приведенных величин показывает, что для межионного расстояния в соединениях MgO и МnО размеры ионов Mg и Мn Играют некоторую роль. В других же соединениях видно, что расстояния между ионами S и Se не зависит от входя щего в соединения другого иона, и ионы S и Se соприкасаются между собою, создавая плотнейшую упаковку ионов.

Рис. 24. Рентгенограмма кристалла кальцита на оси 3-го порядка

Вычисление дает для S -2 ионный радиус, равный 1,84 Å,

а для Se -2 - 1,93 Å. Зная ионные радиусы S -2 и Se -2 , можно вычислить и ионные радиусы других ионов. Так О 2 имеет ионный

радиус, равный 1,32Å. F -1 - 1,33Å, Na +l -0,98Å, Са+ 2 - 1,06,

К +1 - 1,33, Mg +2 -0,78Å, Аl +3 -0,57Å, Si +4 - 0,39Å и т. д. Величина ионного радиуса играет большую роль в вопросах изоморфизма и полиморфизма, что и будет рассмотрено в соответствующих разделах.

Рентгеноструктурное изучение минералов сильно продвинуло вперед современную минералогию, как в вопросах понимания строения минералов, так и связи их строения и состава с другими важными свойствами, как спайность, показатель преломления и др. Значение исследования минералов рентгеновскими лучами прекрасно выражается следующей фразой: «Если кристаллографы познавали минерал в той мере, в какой можно изучить здание, осматривая его снаружи, а химики пытались познать это здание, разрушив его и затем изучая в отдельности входившие в его состав материалы, то рентгеноструктурный анализ впервые позволил нам войти в здание и обозревать его внутреннее расположение и убранство».

Статья на тему Структура кристаллов

Изложенное выше позволяет дать следующее определение понятию «кристаллическая структура». Кристаллическая структура – это такая структура, которой свойственно упорядоченное расположение частиц в строго определенных точках пространства, которые образуют кристаллическую решетку. Эта упорядоченность позволяет экспериментально и теоретически полностью изучить структуру твердого состояния и явления, связанные с природой сил взаимодействия в кристаллических телах.

Для каждого кристалла характерна анизотропность и резко выраженная температура перехода в жидкое состояние. Кристаллы характеризуются внешней симметрией в расположении частиц, которая выражается наличием трех элементов симметрии: центра, оси и плоскости симметрии. Центр симметрии – точка, делящая пополам все соединительные между внешними поверхностями кристалла прямые линии, проведенные через нее по любому направлению. Плоскость симметрии делит кристалл на две части, относящиеся друг к другу, как предмет к своему зеркальному отражению. Ось симметрии – это такая линия, при повороте вокруг которой на определенный угол получается полное совпадение нового положения с прежним. Чем больше элементов симметрии, тем выше внешняя симметрия кристалла. Идеально симметричной фигурой является шар.

В настоящее время все многообразие кристаллических форм по сочетанию элементов симметрии (сингонии) сводится к семи типам: правильная (кубическая), тригональная, гексагональная, тетрагональная, ромбическая, моноклинная и триклинная. В таблице 3.2. приведена классификация кристаллов по сингонии.

Таблица 3.2. Классификация кристаллов по сингонии

Кристаллы низшей сингонии характеризуются меньшей симметрией; кристаллы более высокой категории сингонии имеют более совершенную форму кристаллической решетки и, следовательно, являются более устойчивыми в определенных условиях существования.

Многим веществам в кристаллическом состоянии характерен полиморфизм , т.е. способность вещества существовать в виде нескольких кристаллических структур с различными свойствами. Полиморфизм простых веществ называется аллотропией . Известны полиморфные модификации углерода (алмаз, графит), кварца (α-кварц, β-кварц), железа, вольфрама и др.

Если два разных вещества имеют одинаковую кристаллическую структуру, похожую химическую формулу и не очень сильно различаются по размеру составляющих их частиц, то они могут образовывать смешанные кристаллы. Такие вещества называют изоморфными, их способность образовывать смешанные кристаллы – изоморфизмом. Пример: сходные по составу и структуре, но разные по свойствам являются кристаллы каолинита Al 2 O 3 . 2SiO 2 . 2H 2 O, пирофиллита Al 2 O 3 . 4SiO 2 . 2H 2 O и монтмориллонита Al 2 O 3 . 4SiO 2 . 3H 2 O.

Реальные кристаллы. В свей практической деятельности мы имеем дело с реальными кристаллми, которые отличаются от идеальных нарушениями (дефектами) кристаллической решетки, образующимися в результате изменения равновесных условий роста кристаллов, захвата примесей при кристаллизации, а также под влиянием различного рода внешних воздействий.

Аморфная структура

Аморфная структура является одним из физических состояний твердых тел, Аморфные вещества характеризуются двумя особенностями. Во-первых, свойства таких веществ при обычных условиях не зависят от выбранного направления, т.е. они - изотропны . Во-вторых, при повышении температуры происходит размягчение аморфного вещества и постепенный переход его в жидкое состояние. Точное значение температуры плавления отсутствует.

Общим для кристаллического и аморфного состояний веществ является отсутствие поступательного перемещения частиц и сохранение только их колебательного движения около положения равновесия. Различие между ними состоит в наличии геометрически правильной решетки у кристаллов и отсутствии дальнего порядка в расположении атомов у аморфных веществ.

Аморфное состояние вещества, по сравнению с кристаллическим, всегда менее устойчиво и обладает избыточным запасом внутренней энергии. В связи с этим, при определенных условиях, самопроизвольно осуществляется переход из аморфного состояние в кристаллическое.

Твердые тела в аморфном состоянии можно получить двумя путями. Первый путь – быстрое охлаждение расплавов кристаллических веществ, преимущественно ионного и ковалентного строения. Типичный представитель таких аморфных тел – силикатные стекла, битумы, смолы и пр.

Второй путь – диспергация кристаллических структур. В результате диспергации кристаллических тел образуются аморфизованные дисперсии в виде коллоидов и растворов. Разрушаясь или конденсируясь, дисперсии изменяют свое агрегатное состояние. Пересыщенные растворы, например, могут превратиться в гель и образовать полимер или кристаллизоваться.

Аморфные вещества подразделяют на витроиды (стекла), дисперсные системы и полимеры.

Витроиды – это твердые тела в аморфном состоянии, имеющие стекловидную структуру. Как уже отмечалось, стекла образуются в результате быстрого охлаждения, преимущественно силикатных расплавов. Быстрое охлаждение препятствует созданию упорядоченной структуры. Особенно, если молекулы громоздки, а скорость охлаждения велика.

Способы описания и изображения атомного

Строения кристалла

Кристаллы

Периодичность структуры является наиболее характерным свойством кристаллов. В периодической решетке всегда можно выделить элементарную ячейку , транслируя которую в пространстве легко получить представление о структуре всего кристалла. Образование каким-либо элементом или соединением определенной пространственной решетки в основном зависит от размеров атомов и электронной конфигурации их внешних оболочек.

Русский ученый Е. С. Федоров почти за 40 лет до того, как были найдены методы рентгеноструктурного анализа, рассчитал возможные расположения частиц в кристаллических решетках различных веществ и предложил 230 пространственных гпупп. Геометрически возможны лишь 14 различных пространственных решеток, получивших название решеток Браве и являющихся основой шести кристаллических систем, приведенных в табл. 2.1 и на рис. 2.1. Иногда считают ромбоэдрическую, или тригональную, систему (а = b = с ; α = β = γ ≠ 90°) самостоятельной седьмой системой.

Если атомы расположены только в вершинах элементарной ячейки, то решетка называется примитивной или простой . Если атомы есть и на гранях или в объеме ячейки, то решетка будет сложной (например, базо-, объемо- и гранецентрированной).

Кристаллические тела могут быть в виде отдельных крупных кристаллов - монокристаллов или состоять из совокупности большого числа мелких кристалликов (зерен).

Таблица 2.1

Пространственные решетки кристаллических систем

Кристалличе- ская система Пространственная решетка Соотношение между осевыми углами и осевыми единицами
1. Триклинная I – простая a b c ; α β γ ≠ 90°
2. Моноклинная II – простая III – базоцентрированная a b c ; α = γ = 90°; β ≠ 90°
3. Ромбическаяили орторомбическая IV – простая V – базоцентрированная VI – объемноцентрированная VII – гранецентрированная a b c ; α = β = γ = 90°
4. Гексагональная VIII – простая IX – ромбоэдрическая a = b c ; α = β = 90°; γ = 120°
5. Тетрагональная X – простая XI – объемноцентрированная a = b c ; α = β = γ = 90°
6. Кубическая XII – простая XIII ‑ объемноцентрированная XIV – гранецентрированная a = b = c ; α = β = γ = 90°

Рис. 2.1. Решетки Браве

В случае поликристалла в пределах каждого зерна атомы расположены периодически, но при переходе от одного зерна к другому на границах раздела регулярное расположение частиц нарушается.

Монокристаллы характеризуются анизотропией свойств. В поликристаллических телах анизотропия в большинстве случаев не наблюдается, однако с помощью специальной обработки могут быть получены текстурованные материалы с ориентированым расположением кристаллов.

Так как монокристаллы анизотропны, то при определении электрических, механических и других свойств необходимо указывать расположение кристаллографических плоскостей и направления в кристаллах. Для этого используют индексы Миллера.

Индексы Миллера

Пусть плоскость отсекает на осях координат отрезки ОА, ОВ и ОС (в единицах периода решетки). Рассчитаем обратные им величины H = 1/ОА, K = 1/ОВ, L = 1/ОС и определим наименьшие целые числа с таким же соотношением, как H: K: L = h: k: l. Целочисленные (hkl) называются индексами Миллера плоскости.

В кубических кристаллах индексы (100) относятся к плоскости, параллельной осям У и Z; индексы (010) - к плоскости, параллельной осям X и Z, а (001) - к плоскости, параллельной осям X и Y. В кристаллах с ортогональными осями эти плоскости вместе с тем перпендикулярны соответственно осям X , Y и Z.

Для обозначения направлений в кристалле применяют индексы в виде наименьших целых чисел, относящихся между собой как компо­ненты вектора, параллельного данному направлению. В отличие от обозначения плоскостей их пишут в квадратных скобках. В кубических кристаллах эти направления перпендикулярны плоскости с теми же индексами. Положительное направление оси X обозначают , положительное направление оси Y - , отрица­тельное направление оси Z - , диагональ куба - и т.д. Обозначения кристаллографических плоскостей и направлений приведены, на рис. 2.2.

Плоскости, отсекающие равные отрезки, но расположенные в других октантах, эквивалентны в кристаллографическом и физико-химическом отношениях. Они образуют совокупность эквивалентных плоскостей – {hkl} или систему плоскостей, у которых h, k, l могут быть записаны в любом порядке и с любым числом минусов перед индексами. Минус записывается над индексом.

Положение направления в пространственной решетке может быть легко определено координатами атома, ближайшего к началу координат и лежащего на данном направлении.

Совокупность эквивалентных направлений или система направлений обозначается , где h, k, l могут быть записаны в любом порядке и с любым числом минусов: <100> ‑ совокупность направлений, параллельных всем ребрам куба; {100} ‑ совокупность плоскостей, параллельных всем граням куба.

Рис. 2.2. Примеры обозначения кристаллографических

плоскостей и направлений в кубических кристаллах

с помощью индексов Миллера

Примеры решения задач

Пример 1. Определить индексы плоскости, отсекающей на осях решетки отрезки А = 1, В = 2, С = - 4.

Отношения величин, обратных отрезкам, 1/А: 1/В: 1/С = 1/1: 1/2: 1/(-4). Доводим это отношение до отношения трех целых чисел, умножая на общий знаменатель 4, дополнитель­ными множителями будут 4 и 2. 1/А: 1/В: 1/С = 4: 2:(- 1). Это и будут искомые h, k, l. Индексы плоскости (42 ).

Пример 2. Определить отрезки, которые отсекает на осях решетки плоскость (023).

Записываем величины, обратные индексам плоскости: 1/0, 1/2, 1/3. Умножаем на общий знаменатель, равный 6 (доводим отрезки до целых чисел). Отрезки, отсекаемые плоскостью на осях, будут равны А = , В = 3, С = 2. Эта плоскость будет параллельна оси х, так как А = .

Полиморфизм

Некоторые твердые вещества обладают способностью образовывать не одну, а две и более кристаллические структуры, устойчивые при различных температурах и давлениях. Такое свойство материалов называют полиморфизмом, а отвечающие им кристаллические структуры называют полиморфными формами или аллотропными модификациями вещества.

Модификацию, устойчивую при нормальной и более низкой температуре, принято обозначать буквой α ; модификации, устойчивые при более высоких температурах, обозначают соответственно буквами β , γ и т.д.

Полиморфизм широко распространен среди технических материалов и имеет важное значение для их обработки и эксплуатации.

Классическим примером полиморфизма является низкотемпературное пре­вращение белого олова (β -Sn) в серое (α -Sn), известное в технике как «оловянная чума».

Практический интерес представляет полиморфизм углерода - существование его в виде алмаза или графита. В обычных условиях графит является более устойчивой модификацией, чем алмаз. Однако при повышении давления устойчивость алмаза растет, а графита падает, и при достаточно высоких давлениях алмаз становится более устойчивым. Если при этом повысить температуру, чтобы увеличить подвижность атомов, то графит можно перевести в алмаз. На этом принци­пе основано получение искусственных алмазов. В Советском Союзе их промышленное производство началось в 1961 г. Синтез проводят под давлением порядка 10 10 Па при температуре на уровне 2000 °С. Получаемые таким образом искусственные алмазы имеют более высокую прочность и твердость, нежели природные кристаллы.

2.1.5. Изоморфизм

Изоморфизм – это свойство химически и геометрически близких атомов и ионов и их сочетаний замещать друг друга в кристаллической решетке, образуя кристаллы переменного состава.

Изоморфные кристаллы кремния и германия образуют непрерывный ряд твердых растворов замещения. Оба этих вещества кристаллизуются в структуре алмаза, период решетки германия а = 0,565 нм, кремния а = 0,542 нм, различие в периодах составляет менее 4 %, поэтому возможно образование образование твердых растворов замещения с неограниченной растворимостью, в которых атомы германия и кремния располагаются в узлах алмазной решетки.

Плотность, период решетки, твердость в изоморфном ряду смешанных кристаллов Si – Ge меняются линейно. Подбором различных изоморфных составов удается варьировать области рабочих температур и электрофизические параметры для этих и других твердых растворов полупроводниковых соединений.


Похожая информация.


Молекул в кристалле. Кристаллическая структура определяется кристаллической решёткой, симметрией кристалла, формой и размерами его элементарной ячейки, типом и координатами атомов в ячейке. В идеальном кристалле содержание и положения атомов во всех ячейках одинаковые. За исключением химического состава все остальные характеристики кристаллической структуры определяются дифракционными методами - рентгеновского структурного анализа, электронографии, нейтронографии структурной. В кристаллах твёрдых растворов и при других отклонениях химического состава от стехиометрии структурный анализ высокой точности позволяет определить и уточнить соответствующие параметры.

При падении на монокристалл излучения с длиной волны порядка межатомных расстояний возникает дифракционная картина, которая состоит из дискретного набора пиков. Положения пиков определяются кристаллической решёткой, а их интенсивности зависят от типа атомов и их расположения в элементарной ячейке кристалла. Наличие в кристалле элементов симметрии проявляется в равенстве интенсивностей соответствующих пиков. Исключение составляет то, что дифракционная картина всегда центросимметрична (независимо от наличия или отсутствия центра симметрии в кристалле). Вследствие этого с помощью рентгеноструктурного анализа можно различить только 122 группы из 230 пространственных (фёдоровских) групп симметрии кристаллов. Наличие (или отсутствие) центра симметрии в кристалле можно установить по статистике распределения интенсивностей дифракционных пиков. Экспериментальное определение отсутствия центра симметрии возможно, если в кристалле есть атомы с аномальным рассеянием используемого излучения. Наиболее сложной является методика определения координат атомов в элементарной ячейке кристалла.

Рассмотрим кристаллическую структуру некоторых элементов периодической системы. Так, в двух модификациях полония различной симметрии содержится по 1 атому в элементарной ячейке. В элементарных ячейках кристаллов калия, цинка, молибдена и ряда других элементов содержится по 2 атома, в ячейке теллура - 3, а в двух модификациях марганца по 20 и 58 атомов в ячейке соответственно. В кристаллах неорганических и органических соединений могут находиться от единиц до сотен атомов в ячейке. В кристаллах белков от тысяч до сотни тысяч атомов, а в закристаллизованных вирусах ещё на 2-3 порядка больше.

Рассмотрим кристаллическую структуру кристаллов различной природы. Кристаллы ниобата лития LiNbO 3 широко применяются в лазерной технике и оптике. На рисунке 1 представлены два изображения его кристаллической структуры. В первом случае атомы - шарики. Крупные анионы кислорода не позволяют увидеть общую организацию строения кристалла. Л. Полинг предложил изображать неорганические структуры в форме полиэдров, вершины которых являются центрами анионов, а внутри полиэдров находится соответствующий катион. В представленном на рисунке 1, б ниобате лития это октаэдры и .

Кристаллы семейства ниобата стронция-бария Sr 1-x Ba x Nb 2 О 6 характеризуются нелинейными оптическими, пиро и пьезоэлектрическими свойствами (смотри Пироэлектрики, Пьезоэлектричество), которыми можно целенаправленно управлять, меняя соотношение стронция и бария. На рисунке 2 представлена кристаллическая структура этих кристаллов, из которой видно, что часть атомов стронция занимает собственную позицию, а в другой позиции статистически расположены атомы бария и стронция, координаты которых несколько различаются.

Кристаллические структуры органических соединений обычно представляют собой плотную упаковку молекул, связанных слабыми ван-дер-ваальсовыми и, возможно, водородными связями. Кристаллы органических соединений находят применение в технике, однако часто их получают только для того, чтобы рентгеновскими методами установить атомное строение молекул, так как органические соединения в растворах (а биологически активные соединения в организме) действуют в качестве отдельных молекул. Структуры молекул антибиотиков - аналогов энниатина В и споридесмолида представлены на рисунке 3. Первое соединение является препаратом для избирательного транспорта катионов через биологические мембраны, а второе - лишено этого свойства из-за внутримолекулярных водородных связей, хотя обе молекулы циклические и состоят из 6 аминокислотных остатков. Различие в строении молекул установлено по кристаллической структуре соответствующих кристаллов.

Современный структурный анализ высокой точности позволяет определять не только координаты атомов, но и параметры тепловых колебаний атомов с учётом анизотропии и ангармонизма этих колебаний. Для не очень сложных соединений рентгеноструктурным анализом можно установить распределение электронной плотности в их кристаллах. Структурные методы чувствительны к нарушению стехиометрии химического состава кристалла и к его всевозможным дефектам. Обширный материал о структурах кристаллических веществ представлен в электронных базах данных (смотри Кристаллохимия).

Лит.: Белов Н. В. Структура ионных кристаллов и металлических фаз. М., 1947; он же. Структурная кристаллография. М., 1951; Китайгородский А. И. Органическая кристаллохимия. М., 1947; Федоров Е. С. Симметрия и структура кристаллов. М.; Л., 1949; Бландел Т., Джонсон Л. Кристаллография белка. М., 1979.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Кристамллы (от греч. ксэуфбллпт, первоначально -- лёд, в дальнейшем -- горный хрусталь, кристалл) -- твёрдые тела, в которых атомырасположены закономерно, образуя трёхмерно-периодическую пространственную укладку -- кристаллическую решётку.

Кристаллы -- это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, то есть на одном из нескольких определённых регулярных расположений, составляющих вещество частиц (атомов, молекул, ионов).

Свойства:

Однородность. Это свойство проявляется в том, что два одинаковых элементарных объема кристаллического вещества, одинаково ориентированные в пространстве, но вырезанные в разных точках этого вещества, абсолютно одинаковы по всем своим свойствам: имеют один и тот же цвет, удельный вес, твердость, теплопроводность, электропроводность и др.

Необходимо иметь в виду, что реальные кристаллические вещества очень часто содержат постоянные примеси и включения, искажающие их кристаллические решетки. Поэтому абсолютной однородности в реальных кристаллах часто не бывает.

Анизотропия кристаллов

Многим кристаллам присуще свойство анизотропии, то есть зависимость их свойств от направления, тогда как в изотропных веществах (большинстве газов, жидкостей, аморфных твёрдых телах) или псевдоизотропных (поликристаллы) телах свойства от направлений не зависят. Процесс неупругого деформирования кристаллов всегда осуществляется по вполне определённым системам скольжения, то есть лишь по некоторым кристаллографическим плоскостям и лишь в некотором кристаллографическом направлении. В силу неоднородного и неодинакового развития деформации в различных участках кристаллической среды между этими участками возникает интенсивное взаимодействие через эволюцию полей микронапряжений.

В то же время существуют кристаллы, в которых анизотропия отсутствует.

В физике мартенситной неупругости накоплен богатый экспериментальный материал, особенно по вопросам эффектов памяти формы и пластичности превращения. Экспериментально доказано важнейшее положение кристаллофизики о преимущественном развитии неупругих деформаций почти исключительно посредством мартенситных реакций. Но принципы построения физической теории мартенситной неупругости неясны. Аналогичная ситуация имеет место в случае деформации кристаллов механическим двойникованием.

Значительные успехи достигнуты в изучении дислокационной пластичности металлов. Здесь не только понятны основные структурно-физические механизмы реализации процессов неупругой деформации, но и созданы эффективные способы расчёта явлений.

Способнось самоотгоняться - свойство кристаллов образовывать грани при свободном росте.Так. если выточенный из какого-либо вещества шарик, например поваренная соль, поместить в ее пересыщенный раствор, то через некоторе время этот шарик примет форму куба. В противоположенность этому стеклянный шарик не изменит свою форму так как аморфное вещество не может самоотгоняться.

Постоянная точка плавления. Если нагревать кристаллическое тело, то температура его будет повышаться до определенного предела, при дальнейшем нагревании вещество начнет плавиться, а температура некоторре время останется постоянной, так как все тепло пойдет на разрушение кристаллической решетки. Температура, при которой начинается плавленеиЮ называется температурой плавления.

Систематика кристаллов

Кристаллическая структура

Кристаллическая структура, будучи индивидуальной для каждого вещества, относится к основным физико-химическим свойствам этого вещества. Кристаллимческая структумра -- такая совокупность атомов, в которой с каждой точкой кристаллической решётки связана определённая группа атомов, называемая мотивной единицей, причем все такие группы одинаковые по составу, строению и ориентации относительно решётки. Можно считать, что структура возникает в результате синтеза решётки и мотивной единицы, в результате размножения мотивной единицы группой трансляции.

В простейшем случае мотивная единица состоит из одного атома, например в кристаллах меди или железа. Возникающая на основе такой мотивной единицы структура геометрически весьма сходна с решёткой, но все же отличается тем, что составлена атомами, а не точками. Часто это обстоятельство не учитывают, и термины «кристаллическая решётка» и «кристаллическая структура» для таких кристаллов употребляются как синонимы, что нестрого. В тех случаях, когда мотивная единица более сложна по составу -- состоит из двух или большего числа атомов, геометрического сходства решётки и структуры нет, и смещение этих понятий приводит к ошибкам. Так, например, структура магния или алмаза не совпадает геометрически с решёткой: в этих структурах мотивные единицы состоят из двух атомов.

Основными параметрами, характеризующими кристаллическую структуру, некоторые из которых взаимосвязаны, являются следующие:

§ тип кристаллической решётки (сингония, решётка Браве);

§ число формульных единиц, приходящихся на элементарную ячейку;

§ пространственная группа;

§ параметры элементарной ячейки (линейные размеры и углы);

§ координаты атомов в ячейке;

§ координационные числа всех атомов.

Структурный тип

Кристаллические структуры, обладающие одинаковой пространственной группой и одинаковым размещением атомов по кристаллохимическим позициям (орбитам), объединяют в структурные типы.

Наиболее известны структурные типы меди, магния, б-железа, алмаза (простые вещества), хлорида натрия, сфалерита, вюрцита, хлорида цезия, флюорита (бинарные соединения),перовскита, шпинели (тройные соединения).

Кристаллическая решётка

Составляющие данное твёрдое вещество частицы образуют кристаллическую решётку. Если кристаллические решётки стереометрически (пространственно) одинаковы или сходны (имеют одинаковую симметрию), то геометрическое различие между ними заключается, в частности, в разных расстояниях между частицами, занимающими узлы решётки. Сами расстояния между частицами называются параметрами решётки. Параметры решётки, а также углы геометрических многогранников определяются физическими методами структурного анализа, например, методами рентгеновского структурного анализа.

Размещено на http://www.allbest.ru/

Рис. Кристаллическая решетка

Часто твёрдые вещества образуют (в зависимости от условий) более чем одну форму кристаллической решётки; такие формы называются полиморфными модификациями. Например, среди простых веществ известны ромбическая и моноклинная сера, графит и алмаз, которые являются гексагональной и кубической модификациями углерода, среди сложных веществ -- кварц, тридимит и кристобалит представляют собой различные модификации диоксида кремния.

Виды кристаллов

Следует разделить идеальный и реальный кристалл.

Идеальный кристалл

Является, по сути, математическим объектом, имеющим полную, свойственную ему симметрию, идеализированно ровные гладкие грани.

Реальный кристалл

Всегда содержит различные дефекты внутренней структуры решетки, искажения и неровности на гранях и имеет пониженную симметрию многогранника вследствие специфики условий роста, неоднородности питающей среды, повреждений и деформаций. Реальный кристалл не обязательно обладает кристаллографическими гранями и правильной формой, но у него сохраняется главное свойство -- закономерное положение атомов в кристаллической решётке.

Дефекты кристаллической решетки (реальное строение кристаллов)

В реальных кристаллах всегда имеются отклонения от идеального порядка в расположении атомов, называемые несовершенствами или дефектами решетки. По геометрии вызываемых ими нарушений решетки дефекты подразделяют на точечные, линейные и поверхностные.

Точечные дефекты

На рис. 1.2.5 показаны различные виды точечных дефектов. Это вакансии - пустые узлы решетки, «свои» атомы в междоузлии и атомы примесей в узлах решетки и междоузлиях. Основная причина образования первых двух видов дефектов - движение атомов, интенсивность которого возрастает с повышением температуры.

Рис. 1.2.5. Типы точечных дефектов кристаллической решетки: 1 - вакансия, 2 - атом в междоузлии, 3 и 4 - атомы примесей в узле и междоузлии соответственно

Вокруг любого точечного дефекта возникает местное искажение решетки радиусом R в 1…2 периода решетки (см. рис. 1.2.6), поэтому, если таких дефектов много, они влияют на характер распределения межатомных сил связи и, соответственно, на свойства кристаллов.

Рис. 1.2.6. Локальное искажение кристаллической решетки вокруг вакансии (а) и примесного атома в узле решетки (б)

Линейные дефекты

Линейные дефекты называются дислокациями. Их появление вызвано наличием в отдельных частях кристалла «лишних» атомных полуплоскостей (экстраплоскости). Они возникают в процессе кристаллизации металлов (из-за нарушения порядка заполнения атомных слоев) или в результате их пластического деформирования, как показано на рис. 1.2.7.

Рис. 1.2.7. Образование краевой дислокации () в результате частичного сдвига верхней части кристалла под действием усилия: АВСD - плоскость скольжения; EFGН - экстраплоскость; EН - линия краевой дислокации

Видно, что под влиянием сдвигающего усилия произошел частичный сдвиг верхней части кристалла вдоль некоторой плоскости скольжения («легкого сдвига») АВСD. В результате образовалась экстраплоскость EFGH. Поскольку она не имеет продолжения вниз, вокруг ее края EH возникает упругое искажение решетки радиусом в несколько межатомных расстояний (т.е. 10 -7 см - см. тема 1.2.1), протяженность же этого искажения во много раз больше (может доходить до 0,1…1 см).

Такое несовершенство кристалла вокруг края экстраплоскости является линейным дефектом решетки и называется краевой дислокацией.

Важнейшие механические свойства металлов - прочность и пластичность (см. тема 1.1) - определяются наличием дислокаций и их поведением при нагружении тела.

Остановимся на двух особенностях механизма перемещения дислокаций.

1. Дислокации могут весьма легко (при малой нагрузке) передвигаться вдоль плоскости скольжения посредством «эстафетного» перемещения экстраплоскости. На рис. 1.2.8 показан начальный этап такого движения (двумерный рисунок в плоскости, перпендикулярной линии краевой дислокации).

Рис. 1.2.8. Начальный этап эстафетного перемещения краевой дислокации (). А-А - плоскость скольжения, 1-1 экстраплоскость (исходная позиция)

Под действием усилия атомы экстраплоскости (1-1) отрывают от плоскости (2-3) атомы (2-2), расположенные выше плоскости скольжения. В результате эти атомы образуют новую экстраплоскость (2-2); атомы «старой» экстраплоскости (1-1) занимают освободившиеся места, достраивая плоскость (1-1-3). Этот акт означает исчезновение «старой» дислокации, связанной с экстраплоскостью (1-1), и возникновение «новой», связанной с экстраплоскостью (2-2), или, другими словами, передачу «эстафетной палочки» - дислокации на одно межплоскостное расстояние. Такое эстафетное перемещение дислокации будет продолжаться до тех пор, пока она не дойдет до края кристалла, что будет означать сдвиг его верхней части на одно межплоскостное расстояние (т.е. пластическую деформацию).

Этот механизм не требует больших усилий, т.к. состоит из последовательных микросмещений, затрагивающих лишь ограниченное число атомов, окружающих экстраплоскость.

2. Очевидно, однако, что такая легкость скольжения дислокаций будет наблюдаться лишь в том случае, когда на их пути отсутствуют какие - либо препятствия. Такими препятствиями являются любые дефекты решетки (особенно линейные и поверхностные!), а также частицы других фаз, если они присутствуют в материале. Эти препятствия создают искажения решетки, преодоление которых требует дополнительных внешних усилий, поэтому могут заблокировать движение дислокаций, т.е. сделать их неподвижными.

Поверхностные дефекты

Все промышленные металлы (сплавы) являются поликристаллическими материалами, т.е. состоят из огромного количества мелких (обычно 10 -2 …10 -3 см), хаотически ориентированных кристалликов, называемых зернами. Очевидно, что периодичность решетки, присущая каждому зерну (монокристаллу), в таком материале нарушена, поскольку кристаллографические плоскости зерен повернуты относительно друг друга на угол б (см. рис. 1.2.9), величина которого колеблется от долей до нескольких десятков градусов.

Рис. 1.2.9. Схема строения границ зерен в поликристаллическом материале

Граница между зернами представляет собой переходный слой шириной до 10 межатомных расстояний, обычно с неупорядоченным расположением атомов. Это место скопления дислокаций, вакансий, примесных атомов. Поэтому в объеме поликристаллического материала границы зерен являются двумерными, поверхностными дефектами.

Влияние дефектов решетки на механические свойства кристаллов. Пути повышения прочности металлов.

Прочность - это способность материала сопротивляться деформации и разрушению под действием внешней нагрузки.

Под прочностью кристаллических тел понимают их сопротивление приложенной нагрузке, стремящейся сдвинуть или, в пределе, оторвать одну часть кристалла относительно другой.

Наличие в металлах подвижных дислокаций (уже в процессе кристаллизации возникает до 10 6 …10 8 дислокаций в сечении, равном 1см 2) приводит к их пониженной сопротивляемости нагружению, т.е. высокой пластичности и невысокой прочности.

Очевидно, что наиболее эффективным способом повышения прочности будет удаление дислокаций из металла. Однако такой путь не технологичен, т.к. бездислокационные металлы удается получать лишь в виде тонких нитей (так называемых «усов») диаметром в несколько микрон и длиной до 10 мкм.

Поэтому практические способы упрочнения основаны на торможении, блокировании подвижных дислокаций путем резкого увеличения числа дефектов решетки (в первую очередь линейных и поверхностных!), а также создании многофазных материалов

Такими традиционными методами повышения прочности металлов являются:

– пластическое деформирование (явление наклепа или нагартовки),

– термическая (и химико-термическая) обработка,

– легирование (введение специальных примесей) и, наиболее общий подход, - это создание сплавов.

В заключение следует отметить, что повышение прочности, основанное на блокировании подвижных дислокаций, приводит к снижению пластичности и ударной вязкости и, соответственно, эксплуатационной надежности материала.

Поэтому вопрос о степени упрочнения необходимо решать индивидуально, исходя из назначения и условий работы изделия.

Полиморфизм в буквальном смысле слова означает многоформенность, т.е. явление, когда одинаковые по химическому составу вещества кристаллизуются в различных структурах и образуют кристаллы различных сингогий. Например алмаз и графит имеют одинаковый химический состав, но различные структуры, оба минерала резко отличаются по физ. свойствам. Другим примером может служить кальцит и арагонит - они имеют одинаковый состав СаСО 3 , но представляют различные полиморфные модификации.

Явление полиморфизма связаны с условиями образования кристаллических веществ и обусловлены тем, что в различных термодинамических условиях устойчивыми являются только определенные структуры. Так, металлические олово (так называемое белое олово) при понижении температуры ниже -18 С 0 становится неустойчивым и рассыпается образуя «серое олово» уже иной структуры

Изоморфизм. Сплавы металлов представляют собой кристаллические структуры переменного состава, в которых атомы одного элемента располагаются в промежутках кристаллической решетки другого. Это так называемые твердые растворы второго рода.

В отличие от твердых растворов второго рода в твердых растворах первого рода атомы или ионы одного кристаллического вещества могут замещаться атомами или ионами другого. Последние располагаются в узлах кристаллической решетки. Подобного рода растворы называются изоморфными смесями.

Условия необходимые для проявления изоморфизма:

1) Замещаться могут только ионы одного знака, т.е., катион на катион, а анион на анион

2) Замещаться могут только атомы или ионы близкого размера, т.е. разница величины ионных радиусов не должна превышать при совершенном изоморфизме 15% и несовершенном 25% (например Са 2+ на Mg 2+)

3) Замещаться могут только ионы, близкие по степени поляризации (т.е. по степени ионности-ковалентности связи)

4) Замещаться могут только элементы, имеющие одинаковое координационное число в данной кристаллической структуре

5) изоморфные замещения должны происходить таким образом. Чтобы не нарушался электростатический баланс кристаллической решетки.

6) изоморфные замещения протекают в сторону приращения энергии решетки.

Типы изоморфизма. Различают 4 типа изоморфизма:

1) изовалентный изоморфизм характеризуется тем, что в этом случае происходит ионов одинаковой валентности причем разница в размерах ионных радиусов не должна быть более 15%

2) гетеровалентный изоморфизм. При этом происходит замещение ионов различной валентности. При таком замещении один ион не может замещаться другим без того, чтобы нарушился электростатический баланс кристаллической решетки, поэтому при гетеровалентном изоморфизме замещается не ион, как при гетеровалентном, а группа ионов определенной валентности на другую группу ионов при сохранении той же суммарной валентности.

Необходимо в этом случае всегда помнить что замещение иона одной валентности на ион другой всегда связано с компенсацией валентности. Эта компенсация может происходить как в катионной, так и в анионной части соединений. При этом необходимо соблюдение следующих условий:

А) сумма валентностей замещаемых ионов должна быть равна сумме валентностей замещающих ионов.

Б) сумма ионных радиусов замещаемых ионов должна быть близка к сумме ионных радиусов замещающих ионов и может отличаться от нее не более чем на 15% (для совершенного изоморфизма)

3) изоструктурный. Происходит замещение не одного иона на другой или группы ионов на другую группу, а замещение целого «блока» одной кристаллической решетки на другой такой же «блок». Это может происходить только в том случае, если структуры минералов однотипны и имеют близкие размеры элементарных ячеек.

4) изоморфизм особого рода.

кристалл решётка дефект дислокация

Размещено на Allbest.ru

Подобные документы

    Характеристика пьезоэлектрического эффекта. Изучение кристаллической структуры эффекта: модельное рассмотрение, деформации кристаллов. Физический механизм обратного пьезоэлектрического эффекта. Свойства пьезоэлектрических кристаллов. Применение эффекта.

    курсовая работа , добавлен 09.12.2010

    Сведения о колебаниях кристаллических решёток, функции, описывающие их физические величины. Кристаллографические системы координат. Расчет энергии взаимодействия атомов в ковалентных кристаллах, спектра колебаний кристаллической решётки вольфромата бария.

    дипломная работа , добавлен 09.01.2014

    Прохождение тока через электролиты. Физическая природа электропроводности. Влияние примесей, дефектов кристаллической структуры на удельное сопротивление металлов. Cопротивление тонких металлических пленок. Контактные явления и термоэлектродвижущая сила.

    реферат , добавлен 29.08.2010

    Понятие и классификация дефектов в кристаллах: энергетические, электронные и атомные. Основные несовершенства кристаллов, образование точечных дефекто, их концентрация и скорость перемещения по кристаллу. Диффузия частиц за счет движений вакансий.

    реферат , добавлен 19.01.2011

    Сущность полиморфизма, история его открытия. Физические и химические свойства полиморфных модификаций углерода: алмаза и графита, их сравнительный анализ. Полиморфные превращения жидких кристаллов, тонких пленок дийодида олова, металлов и сплавов.

    курсовая работа , добавлен 12.04.2012

    Кристаллическое и аморфное состояния твердых тел, причины точечных и линейных дефектов. Зарождение и рост кристаллов. Искусственное получение драгоценных камней, твердые растворы и жидкие кристаллы. Оптические свойства холестерических жидких кристаллов.

    реферат , добавлен 26.04.2010

    История развития представления о жидких кристаллах. Жидкие кристаллы, их виды и основные свойства. Оптическая активность жидких кристаллов и их структурные свойства. Эффект Фредерикса. Физический принцип действия устройств на ЖК. Оптический микрофон.

    учебное пособие , добавлен 14.12.2010

    Кристаллизация как процесс перехода металла из жидкого состояния в твердое с образованием кристаллической структуры. Схема образования шва при дуговой сварке. Ключевые факторы и условия, необходимые для начала роста кристаллов из жидкого металла.

    презентация , добавлен 26.04.2015

    Изучение структуры (образование кристаллитами, расположенными хаотическим образом) и способов получения (охлаждение расплава, напыление из газовой фазы, бомбардировка кристаллов нейронами) стекол. Ознакомление с процессами кристаллизации и стеклования.

    реферат , добавлен 18.05.2010

    Дефекты реальных кристаллов, принцип работы биполярных транзисторов. Искажение кристаллической решетки в твердых растворах внедрения и замещения. Поверхностные явления в полупроводниках. Параметры транзистора и коэффициент передачи тока эмиттера.



Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.