Норма атмосферного давления для человека. Атмосферное давление

Длина и расстояние Масса Меры объема сыпучих продуктов и продуктов питания Площадь Объем и единицы измерения в кулинарных рецептах Температура Давление, механическое напряжение, модуль Юнга Энергия и работа Мощность Сила Время Линейная скорость Плоский угол Тепловая эффективность и топливная экономичность Числа Единицы измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Угловая скорость и частота вращения Ускорение Угловое ускорение Плотность Удельный объем Момент инерции Момент силы Вращающий момент Удельная теплота сгорания (по массе) Плотность энергии и удельная теплота сгорания топлива (по объему) Разность температур Коэффициент теплового расширения Термическое сопротивление Удельная теплопроводность Удельная теплоёмкость Энергетическая экспозиция, мощность теплового излучения Плотность теплового потока Коэффициент теплоотдачи Объёмный расход Массовый расход Молярный расход Плотность потока массы Молярная концентрация Массовая концентрация в растворе Динамическая (абсолютная) вязкость Кинематическая вязкость Поверхностное натяжение Паропроницаемость Паропроницаемость, скорость переноса пара Уровень звука Чувствительность микрофонов Уровень звукового давления (SPL) Яркость Сила света Освещённость Разрешение в компьютерной графике Частота и длина волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Электрический заряд Линейная плотность заряда Поверхностная плотность заряда Объемная плотность заряда Электрический ток Линейная плотность тока Поверхностная плотность тока Напряжённость электрического поля Электростатический потенциал и напряжение Электрическое сопротивление Удельное электрическое сопротивление Электрическая проводимость Удельная электрическая проводимость Электрическая емкость Индуктивность Американский калибр проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Магнитодвижущая сила Напряженность магнитного поля Магнитный поток Магнитная индукция Мощность поглощенной дозы ионизирующего излучения Радиоактивность. Радиоактивный распад Радиация. Экспозиционная доза Радиация. Поглощённая доза Десятичные приставки Передача данных Типографика и обработка изображений Единицы измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 мегапаскаль [МПа] = 9,86923266716013 физическая атмосфера [атм]

Исходная величина

Преобразованная величина

паскаль эксапаскаль петапаскаль терапаскаль гигапаскаль мегапаскаль килопаскаль гектопаскаль декапаскаль деципаскаль сантипаскаль миллипаскаль микропаскаль нанопаскаль пикопаскаль фемтопаскаль аттопаскаль ньютон на кв. метр ньютон на кв. сантиметр ньютон на кв. миллиметр килоньютон на кв. метр бар миллибар микробар дина на кв. сантиметр килограмм-сила на кв. метр килограмм-сила на кв. сантиметр килограмм-сила на кв. миллиметр грамм-сила на кв. сантиметр тонна-сила (кор.) на кв. фут тонна-сила (кор.) на кв. дюйм тонна-сила (дл.) на кв. фут тонна-сила (дл.) на кв. дюйм килофунт-сила на кв. дюйм килофунт-сила на кв. дюйм фунт-сила на кв. фут фунт-сила на кв. дюйм psi паундаль на кв. фут торр сантиметр ртутного столба (0°C) миллиметр ртутного столба (0°C) дюйм ртутного столба (32°F) дюйм ртутного столба (60°F) сантиметр вод. столба (4°C) мм вод. столба (4°C) дюйм вод. столба (4°C) фут водяного столба (4°C) дюйм водяного столба (60°F) фут водяного столба (60°F) техническая атмосфера физическая атмосфера децибар стен на квадратный метр пьеза бария (барий) Планковское давление метр морской воды фут морской воды (при 15°С) метр вод. столба (4°C)

Подробнее о давлении

Общие сведения

В физике давление определяется как сила, действующая на единицу площади поверхности. Если две одинаковые силы действуют на одну большую и одну меньшую поверхность, то давление на меньшую поверхность будет больше. Согласитесь, гораздо страшнее, если вам на ногу наступит обладательница шпилек, чем хозяйка кроссовок. Например, если надавить лезвием острого ножа на помидор или морковь, овощ будет разрезан пополам. Площадь поверхности лезвия, соприкасающаяся с овощем, мала, поэтому давление достаточно велико, чтобы разрезать этот овощ. Если же надавить с той же силой на помидор или морковь тупым ножом, то, скорее всего, овощ не разрежется, так как площадь поверхности ножа теперь больше, а значит давление - меньше.

В системе СИ давление измеряется в паскалях, или ньютонах на квадратный метр.

Относительное давление

Иногда давление измеряется как разница абсолютного и атмосферного давления. Такое давление называется относительным или манометрическим и именно его измеряют, например, при проверке давления в автомобильных шинах. Измерительные приборы часто, хотя и не всегда, показывают именно относительное давление.

Атмосферное давление

Атмосферное давление - это давление воздуха в данном месте. Обычно оно обозначает давление столба воздуха на единицу площади поверхности. Изменение в атмосферном давлении влияет на погоду и температуру воздуха. Люди и животные страдают от сильных перепадов давления. Пониженное давление вызывает у людей и животных проблемы разной степени тяжести, от психического и физического дискомфорта до заболеваний с летальным исходом. По этой причине, в кабинах самолетов поддерживается давление выше атмосферного на данной высоте, потому что атмосферное давление на крейсерской высоте полета слишком низкое.


Атмосферное давление понижается с высотой. Люди и животные, живущие высоко в горах, например в Гималаях, адаптируются к таким условиям. Путешественники, напротив, должны принять необходимые меры предосторожности, чтобы не заболеть из-за того, что организм не привык к такому низкому давлению. Альпинисты, например, могут заболеть высотной болезнью, связанной с недостатком кислорода в крови и кислородным голоданием организма. Это заболевание особенно опасно, если находиться в горах длительное время. Обострение высотной болезни ведет к серьезным осложнениям, таким как острая горная болезнь, высокогорный отек легких, высокогорный отек головного мозга и острейшая форма горной болезни. Опасность высотной и горной болезней начинается на высоте 2400 метров над уровнем моря. Во избежание высотной болезни доктора советуют не употреблять депрессанты, такие как алкоголь и снотворное, пить много жидкости, и подниматься на высоту постепенно, например, пешком, а не на транспорте. Также полезно есть большое количество углеводов, и хорошо отдыхать, особенно если подъем в гору произошел быстро. Эти меры позволят организму привыкнуть к кислородной недостаточности, вызванной низким атмосферным давлением. Если следовать этим рекомендациям, то организму сможет вырабатывать больше красных кровяных телец для транспортировки кислорода к мозгу и внутренним органам. Для этого организм увеличат пульс и частоту дыхания.

Первая медицинская помощь в таких случаях оказывается немедленно. Важно переместить больного на более низкую высоту, где атмосферное давление выше, желательно на высоту ниже, чем 2400 метров над уровнем моря. Также используются лекарства и портативные гипербарические камеры. Это легкие переносные камеры, в которых можно повысить давление с помощью ножного насоса. Больного горной болезнью кладут в такую камеру, в которой поддерживается давление, соответствующее более низкой высоте над уровнем моря. Такая камера используется только для оказания первой медицинской помощи, после чего больного необходимо спустить ниже.

Некоторые спортсмены используют низкое давление, чтобы улучшить кровообращение. Обычно для этого тренировки проходят в нормальных условиях, а спят эти спортсмены в среде с низким давлением. Таким образом, их организм привыкает к высокогорным условиям и начинает вырабатывать больше красных кровяных телец, что, в свою очередь, повышает количество кислорода в крови, и позволяет достичь более высоких результатов в спорте. Для этого выпускаются специальные палатки, давление в которых регулируются. Некоторые спортсмены даже изменяют давление во всей спальне, но герметизация спальни - дорогостоящий процесс.

Скафандры

Пилотам и космонавтам приходится работать в среде с низким давлением, поэтому они работают в скафандрах, позволяющих компенсировать низкое давление окружающей среды. Космические скафандры полностью защищают человека от окружающей среды. Их используют в космосе. Высотно-компенсационные костюмы используют пилоты на больших высотах - они помогают пилоту дышать и противодействуют низкому барометрическому давлению.

Гидростатическое давление

Гидростатическое давление - это давление жидкости, вызванное силой тяжести. Это явление играет огромную роль не только в технике и физике, но также и в медицине. Например, кровяное давление - это гидростатическое давление крови на стенки кровеносных сосудов. Кровяное давление - это давление в артериях. Оно представлено двумя величинами: систолическим, или наибольшим давлением, и диастолическим, или наименьшим давлением во время сердцебиения. Приборы для измерения артериального давления называются сфигмоманометрами или тонометрами. За единицу артериального давления приняты миллиметры ртутного столба.

Кружка Пифагора - занимательный сосуд, использующий гидростатическое давление, а конкретно - принцип сифона. Согласно легенде, Пифагор изобрел эту чашку, чтобы контролировать количество выпитого вина. По другим источникам эта чашка должна была контролировать количество выпитой воды во время засухи. Внутри кружки находится изогнутая П-образная трубка, спрятанная под куполом. Один конец трубки длиннее, и заканчивается отверстием в ножке кружки. Другой, более короткий конец, соединен отверстием с внутренним дном кружки, чтобы вода в чашке наполняла трубку. Принцип работы кружки схож с работой современного туалетного бачка. Если уровень жидкости становится выше уровня трубки, жидкость перетекает во вторую половину трубки и вытекает наружу, благодаря гидростатическому давлению. Если уровень, наоборот, ниже, то кружкой можно спокойно пользоваться.

Давление в геологии

Давление - важное понятие в геологии. Без давления невозможно формирование драгоценных камней, как природных, так и искусственных. Высокое давление и высокая температура необходимы также и для образования нефти из остатков растений и животных. В отличие от драгоценных камней, в основном образующихся в горных породах, нефть формируется на дне рек, озер, или морей. Со временем над этими остатками собирается всё больше и больше песка. Вес воды и песка давит на остатки животных и растительных организмов. Со временем этот органический материал погружается глубже и глубже в землю, достигая нескольких километров под поверхностью земли. Температура увеличивается на 25 °C с погружением на каждый километр под земной поверхностью, поэтому на глубине нескольких километров температура достигает 50–80 °C. В зависимости от температуры и перепада температур в среде формирования, вместо нефти может образоваться природный газ.

Природные драгоценные камни

Образование драгоценных камней не всегда одинаково, но давление - это одна из главных составных частей этого процесса. К примеру, алмазы образуются в мантии Земли, в условиях высокого давления и высокой температуры. Во время вулканических извержений алмазы перемещаются в верхние слои поверхности Земли благодаря магме. Некоторые алмазы попадают на Землю с метеоритов, и ученые считают, что они образовались на планетах, похожих на Землю.

Синтетические драгоценные камни

Производство синтетических драгоценных камней началось в 1950-х годах, и набирает популярность в последнее время. Некоторые покупатели предпочитают природные драгоценные камни, но искусственные камни становятся все более и более популярными, благодаря низкой цене и отсутствию проблем, связанных с добычей натуральных драгоценных камней. Так, многие покупатели выбирают синтетические драгоценные камни потому, что их добыча и продажа не связана с нарушением прав человека, детским трудом и финансированием войн и вооруженных конфликтов.

Одна из технологий выращивания алмазов в лабораторных условиях - метод выращивания кристаллов при высоком давлении и высокой температуре. В специальных устройствах углерод нагревают до 1000 °C и подвергают давлению около 5 гигапаскалей. Обычно в качестве кристалла-затравки используют маленький алмаз, а для углеродной основы применяют графит. Из него и растет новый алмаз. Это самый распространенный метод выращивания алмазов, особенно в качестве драгоценных камней, благодаря низкой себестоимости. Свойства алмазов, выращенных таким способом, такие же или лучше, чем свойства натуральных камней. Качество синтетических алмазов зависит от метода их выращивания. По сравнению с натуральными алмазами, которые чаще всего прозрачны, большинство искусственных алмазов окрашено.

Благодаря их твердости, алмазы широко используются на производстве. Помимо этого ценятся их высокая теплопроводность, оптические свойства и стойкость к щелочам и кислотам. Режущие инструменты часто покрывают алмазной пылью, которую также используют в абразивных веществах и материалах. Большая часть алмазов в производстве - искусственного происхождения из-за низкой цены и потому, что спрос на такие алмазы превышает возможности добывать их в природе.

Некоторые компании предлагают услуги по созданию мемориальных алмазов из праха усопших. Для этого после кремации прах очищается, пока не получится углерод, и затем на его основе выращивают алмаз. Изготовители рекламируют эти алмазы как память об ушедших, и их услуги пользуются популярностью, особенно в странах с большим процентом материально обеспеченных граждан, например в США и Японии.

Метод выращивания кристаллов при высоком давлении и высокой температуре

Метод выращивания кристаллов при высоком давлении и высокой температуре в основном используется для синтеза алмазов, но с недавнего времени этот метод помогает усовершенствовать натуральные алмазы или изменить их цвет. Для искусственного выращивания алмазов используют разные прессы. Самый дорогой в обслуживании и самый сложный из них - это пресс кубического типа. Он используется в основном для улучшения или изменения цвета натуральных алмазов. Алмазы растут в прессе со скоростью примерно 0,5 карата в сутки.

Можно скрыть статьи при частом использовании конвертера. Файлы cookies должны быть разрешены в браузере.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Действующее на все находящиеся в ней предметы и на земную поверхность, равное модулю силы, действующей в атмосфере на единицу площади поверхности по нормали к ней . В покоящейся стационарной атмосфере давление численно равно весу вышележащего столба воздуха на основание с площадью, равной единице. Атмосферное давление является одним из термодинамических параметров состояния атмосферы, оно изменяется в зависимости от места и времени . Давление - величина скалярная, имеющая размерность L −1 MT −2 , измеряется барометром .

История

Изменчивость и влияние на погоду

На земной поверхности атмосферное давление изменяется от места к месту и во времени. Особенно важны определяющие погоду непериодические изменения атмосферного давления, связанные с возникновением, развитием и разрушением медленно движущихся областей высокого давления (антициклонов) и относительно быстро перемещающихся огромных вихрей (циклонов), в которых господствует пониженное давление. Отмечены колебания атмосферного давления на уровне моря в пределах 641 - 816 мм рт. ст. (внутри смерча давление падает и может достигать значения 560 мм ртутного столба) .

В стационарных условиях атмосферное давление уменьшается по мере увеличения высоты, поскольку оно создаётся лишь вышележащим слоем атмосферы. Зависимость давления от высоты описывается барометрической формулой .

Атмосферное давление - очень изменчивый метеоэлемент. Из его определения следует, что оно зависит от высоты соответствующего столба воздуха, его плотности, от ускорения силы тяжести, которая меняется от широты места и высоты над уровнем моря.

Стандартное давление

В химии стандартным атмосферным давлением с 1982 года по рекомендации IUPAC считается давление, равное 100 кПа . Атмосферное давление является одной из наиболее существенных характеристик состояния атмосферы. В покоящейся атмосфере давление в любой точке равно весу вышележащего столба воздуха с единичным сечением.

Уравнение статики выражает закон изменения давления с высотой: − Δ p = g ρ Δ z {\displaystyle -\Delta p=g\rho \Delta z} , где: p {\displaystyle p} - давление, g {\displaystyle g} - ускорение свободного падения, ρ {\displaystyle \rho } - плотность воздуха, - толщина слоя. Из основного уравнения статики следует, что при увеличении высоты ( Δ z > 0 {\displaystyle \Delta z>0} ) изменение давления отрицательное, то есть давление уменьшается. Строго говоря, основное уравнение статики справедливо только для очень тонкого (бесконечно тонкого) слоя воздуха Δ z {\displaystyle \Delta z} . Однако на практике оно применимо, когда изменение высоты достаточно мало по отношению к приблизительной толщине атмосферы.

Барическая ступень

Высота, на которую надо подняться или опуститься, чтобы давление изменилось на 1 гПа (гектопаскаль) , называется «барической (барометрической) ступенью». Барической ступенью удобно пользоваться при решении задач, не требующих высокой точности, например, для оценки давления по известной разности высот. Считая, что атмосфера не испытывает существенного вертикального ускорения (то есть находится в квазистатическом состоянии), из основного закона статики получаем, что барическая ступень h {\displaystyle h} равна:

h = − Δ z / Δ p = 1 / g ρ {\displaystyle h=-\Delta z/\Delta p=1/g\rho } .

При температуре воздуха 0 °C и давлении 1000 гПа, барическая ступень равна 8 /гПа. Следовательно, чтобы давление уменьшилось на 1 гПа, нужно подняться на 8 метров.

С ростом температуры и увеличением высоты над уровнем моря она возрастает (в частности, на 0,4 % на каждый градус нагревания), то есть она прямо пропорциональна температуре и обратно пропорциональна давлению. Величина, обратная барической ступени, - вертикальный барический градиент , то есть изменение давления при поднятии или опускании на 100 метров. При температуре 0 °C и давлении 1000 гПа он равен 12,5 гПа .

При повышении температуры на 1 градус давление увеличивается на 0,28 мм рт. ст.

Приведение к уровню моря

Многие метеостанции рассылают так называемые «синоптические телеграммы», в которых указывается давление, приведённое к уровню моря (см. КН-01 , METAR). Это делается для того, чтобы давление было сравнимо на станциях, расположенных на разных высотах, а также для нужд авиации. Приведённое давление используется также и на синоптических картах.

При приведении давления к уровню моря используют сокращенную формулу Лапласа:

Z 2 − z 1 = 18400 (1 + λ t) lg ⁡ (p 1 / p 2) {\displaystyle z_{2}-z_{1}=18400(1+\lambda t)\lg(p_{1}/p_{2})} .

То есть, зная давление и температуру на уровне z 2 {\displaystyle z_{2}} , можно найти давление p 1 {\displaystyle p_{1}} на уровне моря z 1 = 0 {\displaystyle z_{1}=0} .

Вычисление давления на высоте h {\displaystyle h} по давлению на уровне моря и температуре воздуха T {\displaystyle T} :

P = P 0 e − M g h / R T {\displaystyle P=P_{0}e^{-Mgh/RT}} ,

где P 0 {\displaystyle P_{0}} - давление Па на уровне моря [Па];
M {\displaystyle M} - молярная масса сухого воздуха, M = 0,029 кг/моль;
g {\displaystyle g} -

Длина и расстояние Масса Меры объема сыпучих продуктов и продуктов питания Площадь Объем и единицы измерения в кулинарных рецептах Температура Давление, механическое напряжение, модуль Юнга Энергия и работа Мощность Сила Время Линейная скорость Плоский угол Тепловая эффективность и топливная экономичность Числа Единицы измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Угловая скорость и частота вращения Ускорение Угловое ускорение Плотность Удельный объем Момент инерции Момент силы Вращающий момент Удельная теплота сгорания (по массе) Плотность энергии и удельная теплота сгорания топлива (по объему) Разность температур Коэффициент теплового расширения Термическое сопротивление Удельная теплопроводность Удельная теплоёмкость Энергетическая экспозиция, мощность теплового излучения Плотность теплового потока Коэффициент теплоотдачи Объёмный расход Массовый расход Молярный расход Плотность потока массы Молярная концентрация Массовая концентрация в растворе Динамическая (абсолютная) вязкость Кинематическая вязкость Поверхностное натяжение Паропроницаемость Паропроницаемость, скорость переноса пара Уровень звука Чувствительность микрофонов Уровень звукового давления (SPL) Яркость Сила света Освещённость Разрешение в компьютерной графике Частота и длина волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Электрический заряд Линейная плотность заряда Поверхностная плотность заряда Объемная плотность заряда Электрический ток Линейная плотность тока Поверхностная плотность тока Напряжённость электрического поля Электростатический потенциал и напряжение Электрическое сопротивление Удельное электрическое сопротивление Электрическая проводимость Удельная электрическая проводимость Электрическая емкость Индуктивность Американский калибр проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Магнитодвижущая сила Напряженность магнитного поля Магнитный поток Магнитная индукция Мощность поглощенной дозы ионизирующего излучения Радиоактивность. Радиоактивный распад Радиация. Экспозиционная доза Радиация. Поглощённая доза Десятичные приставки Передача данных Типографика и обработка изображений Единицы измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 паскаль [Па] = 1,0197162129779E-05 техническая атмосфера [ат]

Исходная величина

Преобразованная величина

паскаль эксапаскаль петапаскаль терапаскаль гигапаскаль мегапаскаль килопаскаль гектопаскаль декапаскаль деципаскаль сантипаскаль миллипаскаль микропаскаль нанопаскаль пикопаскаль фемтопаскаль аттопаскаль ньютон на кв. метр ньютон на кв. сантиметр ньютон на кв. миллиметр килоньютон на кв. метр бар миллибар микробар дина на кв. сантиметр килограмм-сила на кв. метр килограмм-сила на кв. сантиметр килограмм-сила на кв. миллиметр грамм-сила на кв. сантиметр тонна-сила (кор.) на кв. фут тонна-сила (кор.) на кв. дюйм тонна-сила (дл.) на кв. фут тонна-сила (дл.) на кв. дюйм килофунт-сила на кв. дюйм килофунт-сила на кв. дюйм фунт-сила на кв. фут фунт-сила на кв. дюйм psi паундаль на кв. фут торр сантиметр ртутного столба (0°C) миллиметр ртутного столба (0°C) дюйм ртутного столба (32°F) дюйм ртутного столба (60°F) сантиметр вод. столба (4°C) мм вод. столба (4°C) дюйм вод. столба (4°C) фут водяного столба (4°C) дюйм водяного столба (60°F) фут водяного столба (60°F) техническая атмосфера физическая атмосфера децибар стен на квадратный метр пьеза бария (барий) Планковское давление метр морской воды фут морской воды (при 15°С) метр вод. столба (4°C)

Подробнее о давлении

Общие сведения

В физике давление определяется как сила, действующая на единицу площади поверхности. Если две одинаковые силы действуют на одну большую и одну меньшую поверхность, то давление на меньшую поверхность будет больше. Согласитесь, гораздо страшнее, если вам на ногу наступит обладательница шпилек, чем хозяйка кроссовок. Например, если надавить лезвием острого ножа на помидор или морковь, овощ будет разрезан пополам. Площадь поверхности лезвия, соприкасающаяся с овощем, мала, поэтому давление достаточно велико, чтобы разрезать этот овощ. Если же надавить с той же силой на помидор или морковь тупым ножом, то, скорее всего, овощ не разрежется, так как площадь поверхности ножа теперь больше, а значит давление - меньше.

В системе СИ давление измеряется в паскалях, или ньютонах на квадратный метр.

Относительное давление

Иногда давление измеряется как разница абсолютного и атмосферного давления. Такое давление называется относительным или манометрическим и именно его измеряют, например, при проверке давления в автомобильных шинах. Измерительные приборы часто, хотя и не всегда, показывают именно относительное давление.

Атмосферное давление

Атмосферное давление - это давление воздуха в данном месте. Обычно оно обозначает давление столба воздуха на единицу площади поверхности. Изменение в атмосферном давлении влияет на погоду и температуру воздуха. Люди и животные страдают от сильных перепадов давления. Пониженное давление вызывает у людей и животных проблемы разной степени тяжести, от психического и физического дискомфорта до заболеваний с летальным исходом. По этой причине, в кабинах самолетов поддерживается давление выше атмосферного на данной высоте, потому что атмосферное давление на крейсерской высоте полета слишком низкое.


Атмосферное давление понижается с высотой. Люди и животные, живущие высоко в горах, например в Гималаях, адаптируются к таким условиям. Путешественники, напротив, должны принять необходимые меры предосторожности, чтобы не заболеть из-за того, что организм не привык к такому низкому давлению. Альпинисты, например, могут заболеть высотной болезнью, связанной с недостатком кислорода в крови и кислородным голоданием организма. Это заболевание особенно опасно, если находиться в горах длительное время. Обострение высотной болезни ведет к серьезным осложнениям, таким как острая горная болезнь, высокогорный отек легких, высокогорный отек головного мозга и острейшая форма горной болезни. Опасность высотной и горной болезней начинается на высоте 2400 метров над уровнем моря. Во избежание высотной болезни доктора советуют не употреблять депрессанты, такие как алкоголь и снотворное, пить много жидкости, и подниматься на высоту постепенно, например, пешком, а не на транспорте. Также полезно есть большое количество углеводов, и хорошо отдыхать, особенно если подъем в гору произошел быстро. Эти меры позволят организму привыкнуть к кислородной недостаточности, вызванной низким атмосферным давлением. Если следовать этим рекомендациям, то организму сможет вырабатывать больше красных кровяных телец для транспортировки кислорода к мозгу и внутренним органам. Для этого организм увеличат пульс и частоту дыхания.

Первая медицинская помощь в таких случаях оказывается немедленно. Важно переместить больного на более низкую высоту, где атмосферное давление выше, желательно на высоту ниже, чем 2400 метров над уровнем моря. Также используются лекарства и портативные гипербарические камеры. Это легкие переносные камеры, в которых можно повысить давление с помощью ножного насоса. Больного горной болезнью кладут в такую камеру, в которой поддерживается давление, соответствующее более низкой высоте над уровнем моря. Такая камера используется только для оказания первой медицинской помощи, после чего больного необходимо спустить ниже.

Некоторые спортсмены используют низкое давление, чтобы улучшить кровообращение. Обычно для этого тренировки проходят в нормальных условиях, а спят эти спортсмены в среде с низким давлением. Таким образом, их организм привыкает к высокогорным условиям и начинает вырабатывать больше красных кровяных телец, что, в свою очередь, повышает количество кислорода в крови, и позволяет достичь более высоких результатов в спорте. Для этого выпускаются специальные палатки, давление в которых регулируются. Некоторые спортсмены даже изменяют давление во всей спальне, но герметизация спальни - дорогостоящий процесс.

Скафандры

Пилотам и космонавтам приходится работать в среде с низким давлением, поэтому они работают в скафандрах, позволяющих компенсировать низкое давление окружающей среды. Космические скафандры полностью защищают человека от окружающей среды. Их используют в космосе. Высотно-компенсационные костюмы используют пилоты на больших высотах - они помогают пилоту дышать и противодействуют низкому барометрическому давлению.

Гидростатическое давление

Гидростатическое давление - это давление жидкости, вызванное силой тяжести. Это явление играет огромную роль не только в технике и физике, но также и в медицине. Например, кровяное давление - это гидростатическое давление крови на стенки кровеносных сосудов. Кровяное давление - это давление в артериях. Оно представлено двумя величинами: систолическим, или наибольшим давлением, и диастолическим, или наименьшим давлением во время сердцебиения. Приборы для измерения артериального давления называются сфигмоманометрами или тонометрами. За единицу артериального давления приняты миллиметры ртутного столба.

Кружка Пифагора - занимательный сосуд, использующий гидростатическое давление, а конкретно - принцип сифона. Согласно легенде, Пифагор изобрел эту чашку, чтобы контролировать количество выпитого вина. По другим источникам эта чашка должна была контролировать количество выпитой воды во время засухи. Внутри кружки находится изогнутая П-образная трубка, спрятанная под куполом. Один конец трубки длиннее, и заканчивается отверстием в ножке кружки. Другой, более короткий конец, соединен отверстием с внутренним дном кружки, чтобы вода в чашке наполняла трубку. Принцип работы кружки схож с работой современного туалетного бачка. Если уровень жидкости становится выше уровня трубки, жидкость перетекает во вторую половину трубки и вытекает наружу, благодаря гидростатическому давлению. Если уровень, наоборот, ниже, то кружкой можно спокойно пользоваться.

Давление в геологии

Давление - важное понятие в геологии. Без давления невозможно формирование драгоценных камней, как природных, так и искусственных. Высокое давление и высокая температура необходимы также и для образования нефти из остатков растений и животных. В отличие от драгоценных камней, в основном образующихся в горных породах, нефть формируется на дне рек, озер, или морей. Со временем над этими остатками собирается всё больше и больше песка. Вес воды и песка давит на остатки животных и растительных организмов. Со временем этот органический материал погружается глубже и глубже в землю, достигая нескольких километров под поверхностью земли. Температура увеличивается на 25 °C с погружением на каждый километр под земной поверхностью, поэтому на глубине нескольких километров температура достигает 50–80 °C. В зависимости от температуры и перепада температур в среде формирования, вместо нефти может образоваться природный газ.

Природные драгоценные камни

Образование драгоценных камней не всегда одинаково, но давление - это одна из главных составных частей этого процесса. К примеру, алмазы образуются в мантии Земли, в условиях высокого давления и высокой температуры. Во время вулканических извержений алмазы перемещаются в верхние слои поверхности Земли благодаря магме. Некоторые алмазы попадают на Землю с метеоритов, и ученые считают, что они образовались на планетах, похожих на Землю.

Синтетические драгоценные камни

Производство синтетических драгоценных камней началось в 1950-х годах, и набирает популярность в последнее время. Некоторые покупатели предпочитают природные драгоценные камни, но искусственные камни становятся все более и более популярными, благодаря низкой цене и отсутствию проблем, связанных с добычей натуральных драгоценных камней. Так, многие покупатели выбирают синтетические драгоценные камни потому, что их добыча и продажа не связана с нарушением прав человека, детским трудом и финансированием войн и вооруженных конфликтов.

Одна из технологий выращивания алмазов в лабораторных условиях - метод выращивания кристаллов при высоком давлении и высокой температуре. В специальных устройствах углерод нагревают до 1000 °C и подвергают давлению около 5 гигапаскалей. Обычно в качестве кристалла-затравки используют маленький алмаз, а для углеродной основы применяют графит. Из него и растет новый алмаз. Это самый распространенный метод выращивания алмазов, особенно в качестве драгоценных камней, благодаря низкой себестоимости. Свойства алмазов, выращенных таким способом, такие же или лучше, чем свойства натуральных камней. Качество синтетических алмазов зависит от метода их выращивания. По сравнению с натуральными алмазами, которые чаще всего прозрачны, большинство искусственных алмазов окрашено.

Благодаря их твердости, алмазы широко используются на производстве. Помимо этого ценятся их высокая теплопроводность, оптические свойства и стойкость к щелочам и кислотам. Режущие инструменты часто покрывают алмазной пылью, которую также используют в абразивных веществах и материалах. Большая часть алмазов в производстве - искусственного происхождения из-за низкой цены и потому, что спрос на такие алмазы превышает возможности добывать их в природе.

Некоторые компании предлагают услуги по созданию мемориальных алмазов из праха усопших. Для этого после кремации прах очищается, пока не получится углерод, и затем на его основе выращивают алмаз. Изготовители рекламируют эти алмазы как память об ушедших, и их услуги пользуются популярностью, особенно в странах с большим процентом материально обеспеченных граждан, например в США и Японии.

Метод выращивания кристаллов при высоком давлении и высокой температуре

Метод выращивания кристаллов при высоком давлении и высокой температуре в основном используется для синтеза алмазов, но с недавнего времени этот метод помогает усовершенствовать натуральные алмазы или изменить их цвет. Для искусственного выращивания алмазов используют разные прессы. Самый дорогой в обслуживании и самый сложный из них - это пресс кубического типа. Он используется в основном для улучшения или изменения цвета натуральных алмазов. Алмазы растут в прессе со скоростью примерно 0,5 карата в сутки.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

ЗАДАЧНИК ОНЛ@ЙН
БИБЛИОТЕКА 1

Давление — это физическая величина, показывающей действующую силу на единицу площади поверхности перпендикулярно этой поверхности.
Давление определяется, как P = F / S , где P - давление, F - сила давления, S - площадь поверхности. Из этой формулы видно, что давление зависит от площади поверхности тело действующего с некой силой. Чем меньше площадь поверхности, тем больше давление.

Единицей измерения давления является ньютон на квадратный метр (H/м 2). Также мы можем перевести единицы давления Н/м 2 в паскали, - единицы измерения, названные в честь французского ученого Блеза Паскаля, который вывел, так называемый, Закон Паскаля. 1 Н/м 2 = 1 Па.

Что такое???

Измерение давления

Давления газов и жидкостей - манометром, дифманометром, вакумметро, датчиком давления.
Атмосферного давления - барометром.
Артериального давления - тонометром.

Вычислении оказываемого давления телом на поверхность:

Масса тело, кг.:
Площадь поверхности тело, м 2:
Ускорение свободного падения, м/с 2 (g = 9.81 м/с 2):


И так, еще раз давление определяется, как P = F / S. Сила в гравитационном поле равно весу - F= m * g, где m - масса тело; g - ускорение свободного падения. Тогда давление -
P = m * g / S . Используя данную формулу, можно определить давление оказываемое телом на поверхность. Например, человеком на землю.

Зависимость атмосферного давления от высоты над уровнем моря:

Давление над уровнем моря (нормальное 760) в мм рт.ст.:
Температура воздуха(нормальное 15 o С) градусы Цельсия:
Высота над уровнем моря (в метрах):
Примечание. Дробные числа вводите через точку.


Атмосферное давление с высотой убывает. Зависимость атмосферного давления от высоты определяется барометрической формулой -
P = Po*exp(- μgh/RT) . Где, μ = 0,029 кг/м3 - молекулярная масса газа (воздуха); g = 9.81 м/с2 - ускорение свободного падения; h - h o - разность высоты над уровнем моря и высотой принятой начало отчета (h=h o); R = 8,31 - Дж/моль К- газовая постоянная; Ро - атмосферное давление на высоте, принятой за начало отсчета; Т- температура по Кельвину.



Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.