Почему развивается устойчивость к антибиотикам? Размышления клинициста об устойчивости микробов к антибиотикам Резистентность бактерий к природным антибиотикам.

Помимо побочного действия антибиотиков на макроорганизм человека, антибиотики оказывают нежелательное воздействие и на микроорганизмы: 1) изменяются свойства микробов , что затрудняет их распознавание и диагностику заболеваний; 2) формируется приобретенная антибиотикоустойчивость (резистентность). Различают также врожденную или видовую устойчивость к антибиотикам. Она обусловлена видовыми свойствами, которые определяются геномом клетки (пенициллин не действует на микроорганизмы, у которых отсутствует пептидогликан в клеточной стенке). Циркуляция в природе антибиотикорезистентных бактерий создает трудности в лечении инфекционных заболеваний.

Для того, чтобы антибиотик оказал свое действие на микроорганизм необходимо следующее:

1) антибиотик должен проникнуть в клетку;

2) антибиотик должен вступить во взаимодействие с «мишенью» (структура, на которую должен действовать антибиотик, например, молекула ДНК или рибосомы клетки);

3) антибиотик должен сохранять свою активную структуру.

Если какое-либо из этих условий не будет выполнено, антибиотик не сможет оказать свое воздействие и у бактерий или других микробов развивается устойчивость к данному антибиотику.

Развитие устойчивости объясняется генетическими процессами , что затем проявляется через определенные биохимические механизмы . Например, устойчивость грибов р. Candida к нистатину связана с мутацией генов , которые отвечают за строение клеточной мембраны , которая является «мишенью» для действия нистатина.

Генетические процессы связаны с изменениями в геноме бактерий в результате мутаций и с наличием R-плазмид. В связи с этим различают:

1) хромосомную устойчивость - возникает в результате мутаций в геноме (хромосоме) и обычно бывает к одному антибиотику; такая устойчивость может передаваться по наследству при всех видах генетического обмена;

2) внехромосомную устойчивость (наблюдается значительно чаще) - связана с наличием в цитоплазме бактерий R–плазмиды, которая определяет множественную лекарственную устойчивостью (к нескольким антибиотикам); она может передаваться другим бактериям при конъюгации и трансформации.

Биохимические механизмы:

1) изменение проницаемости мембраны для антибиотика; например, снижение проницаемости наружной мембраны у грамотрицательных бактерий обеспечивает их устойчивость к ампициллину;

2) изменение «мишени»; например, устойчивость к стрептомицину связана с изменением рибосомального белка, с которым взаимодействует стрептомицин;

3) нарушение специфического транспорта антибиотика в бактериальную клетку ; например, устойчивость к тетрациклину может быть связана с подавлением транспорта этого антибиотика в клетку;

4) превращение активной формы антибиотика в неактивную (основной биохимический механизм) при помощи ферментов; образование таких ферментов связано с R-плазмидами и транспозонами (отрезками ДНК). Важное значение имеют ферменты пептидазы, которые вызывают гидролиз антибиотиков. Например, ферменты лактамазы, разрушающие –лактамное кольцо. К этим ферментам относится индуцибельный фермент пенициллиназа. 98% стафилококков образуют пенициллиназу, разрушающую пенициллин, поэтому они обладают устойчивостью к пенициллину. У E.coli и протея пенициллиназа является конститутивным ферментом, чем и объясняется их естественная резистентность к пенициллину. E. сoli образует фермент стрептомициназу, которая разрушает стрептомицин. Имеются бактерии, образующие ферменты, которые вызывают ацетилирование, фосфорилирование и другие изменения структуры антибиотиков, что приводит к потере их активности;

5) возникновение у микробов другого пути метаболизма вместо того пути, который нарушен антибиотиком.

Распространению антибиотикорезистентности способствуют следующие условия:

1) широкое бесконтрольное применение антибиотиков для лечения (самолечение) и профилактики заболеваний, что способствует отбору резистентных форм, возникших в результате генетических процессов;

2) применение одних и тех же антибиотиков для лечения человека и животных (или в качестве консервантов пищевых продуктов).

Для предупреждения развития устойчивости к антибиотикам и для правильного лечения необходимо соблюдать следующие принципы.

1. Микробиологический : антибиотики применять по показаниям, предварительно определять антибиотикограмму.

2. Фармакологический : при назначении антибиотика необходимо определить правильную дозировку препарата, схему лечения, по возможности сочетать различные средства, чтобы предупреждать формирование резистентных форм.

3. Клинический: учитывать общее состояние больных, возраст, пол, состояние иммунной системы, сопутствующие заболевания, наличие беременности.

4. Эпидемиологический: знать, к каким антибиотикам устойчивы микроорганизмы в среде, окружающей больного (отделение, больница, географический регион).

5. Фармацевтический: необходимо учитывать срок годности, условия хранения препарата, так как при длительном и неправильном хранении образуются токсические продукты деградации антибиотика.

В процессе лечения многие сталкиваются с такой проблемой, как резистентность организма к действию антибиотиков. Для многих такое заключение медиков становится реальной проблемой при лечении разного рода заболеваний.

Что такое резистентность?

Резистентность - это устойчивость микроорганизмов к действию антибиотиков. В организме человека в совокупности всех микроорганизмов встречаются устойчивые к действию антибиотика особи, но их количество минимальное. Когда антибиотик начинает действовать, вся популяция клеток гибнет (бактерицидный эффект) или вовсе прекращает свое развитие (бактериостатический эффект). Устойчивые клетки к антибиотикам остаются и начинают активно размножаться. Такая предрасположенность передается по наследству.

В организме человека вырабатывается определенная чувствительность к действию определенного рода антибиотиков, а в некоторых случаях и полная замена звеньев обменных процессов, что дает возможность не реагировать микроорганизмам на действие антибиотика.

Также в некоторых случаях микроорганизмы и сами могут начать вырабатывать вещества, которые нейтрализуют действие вещества. Такой процесс носит название энзиматической инактивации антибиотиков.

Те микроорганизмы, которые имеют резистентность к определенному типу антибиотиков, могут, в свою очередь, иметь устойчивость к подобным классам веществ, схожих по механизму действия.

Так ли опасна резистентность?

Резистентность - это хорошо или плохо? Проблема резистентности в данный момент приобретает эффект «эры постантибиотиков». Если ранее проблему устойчивости или невосприятия антибиотика решали путем создания более сильного вещества, то на данный момент такой возможности уже нет. Резистентность - это проблема, к которой нужно относиться серьезно.

Самая главная опасность резистентности — это несвоевременное поступление в организм антибиотиков. Организм попросту не может немедленно среагировать на его действие и остается без должной антибиотикотерапии.

Среди основных ступеней опасности можно выделить:

  • тревожные факторы;
  • глобальные проблемы.

В первом случае есть большая вероятность проблемы развития резистентности из-за назначения таких групп антибиотиков, как цефалоспорины, макролиды, хинолоны. Это довольно сильные антибиотики широкого спектра действия, которые назначаются для лечения опасных и сложных заболеваний.

Второй тип — глобальные проблемы - представляет собой все негативные стороны резистентности, среди которых:

  1. Увеличенные сроки госпитализации.
  2. Большие финансовые затраты на лечение.
  3. Большой процент смертности и заболеваемости у людей.

Такие проблемы особенно ярко выражены при совершении путешествий в страны Средиземноморья, но в основном зависят от разновидности микроорганизмов, которые могут попасть под воздействие антибиотика.

Резистентность к антибиотикам

К основным факторам, приводящим к развитию резистентности к антибиотикам, относят:

  • питьевая вода низкого качества;
  • антисанитарные условия;
  • бесконтрольное применение антибиотиков, а также их использование на животноводческих фермах для лечения животных и роста молодняка.

Среди основных подходов к решению проблем по борьбе с инфекциями при резистентности к антибиотикам ученые приходят к:

  1. Разработке новых видов антибиотиков.
  2. Изменение и модификация химических структур.
  3. Новые разработки препаратов, которые будут направлены на клеточные функции.
  4. Ингибирование вирулентных детерминант.

Как снизить возможность развития резистентности к антибиотикам?

Главным условием является максимальное устранение селективного воздействия антибиотиков на бактериологический ход.

Чтобы побороть резистентность к антибиотикам, необходимо соблюдение некоторых условий:

  1. Назначение антибиотиков только при четкой клинической картине.
  2. Использование простейших антибиотиков при лечении.
  3. Применение кратких курсов антибиотикотерапии.
  4. Взятие микробиологических проб на эффективность действия конкретной группы антибиотиков.

Неспецифическая резистентность

Под этим термином принято понимать так называемый врожденный иммунитет. Это целый комплекс факторов, которые определяют восприимчивость или невосприимчивость к действию того или иного препарата на организм, а также антимикробные системы, которые не зависят от предварительного контакта с антигеном.

К таким системам можно отнести:

  • Система фагоцитов.
  • Кожные и слизистые организма.
  • Естественные эозинофилы и киллеры (внеклеточные уничтожители).
  • Системы комплимента.
  • Гуморальные факторы в острой фазе.

Факторы неспецифической резистентности

Что такое фактор резистентности? К основным факторам неспецифической резистентности относят:

  • Все анатомические барьеры (кожные покровы, мерцательный эпитилий).
  • Физиологические барьеры (Ph, температурные показатели, растворимые факторы— интерферон, лизоцим, комплемент).
  • Клеточные барьеры (прямой лизис чужеродной клетки, эндоцитоз).
  • Воспалительные процессы.

Основные свойства неспецифических факторов защиты:

  1. Система факторов, которая предшествует еще до встречи с антибиотиком.
  2. Нет строгой специфической реакции, так как антиген не распознан.
  3. Нет запоминания чужеродного антигена при вторичном контакте.
  4. Эффективность продолжается в первые 3—4 суток до включения в действие адаптивного иммунитета.
  5. Быстрая реакция на попадание антигена.
  6. Формирование быстрого воспалительного процесса и иммунного ответа на антиген.

Подводя итоги

Значит, резистентность - это не очень хорошо. Проблема резистентности на данный момент занимает довольно серьезное место среди методов лечения антибиотикотерапии. В процессе назначения определенного типа антибиотиков врачом должен быть проведен весь спектр лабораторных и ультразвуковых исследований для постановки точной клинической картины. Только при получении этих данных можно переходить к назначению антибиотикотерапии. Многие специалисты рекомендуют назначать для лечения сперва легкие группы антибиотиков, а при их неэффективности переходить к более широкому спектру антибиотиков. Такая поэтапность поможет избежать возможного развития такой проблемы, как резистентность организма. Также не рекомендуется заниматься самолечением и употреблять бесконтрольно лекарственные препараты в лечении людей и животных.

Антибиотики используются в клинической практике более 70 лет. Благодаря их применению было спасено миллионы людей. Несмотря на это, и сегодня в XXI веке смертность от инфекционных заболеваний остается высокой. Причиной этому является развитие устойчивости (резистентности) к антибиотикам.

Резистентность к антибиотикам бывает:

  • Природной.
    Когда в микроорганизме отсутствует мишень для действия антибиотика или она недоступна.
    Примеры:
    — β-лактамные антибиотики не действуют на микоплазмы. Мишенью β-лактамов являются ферменты локализованные в стенках бактериальных клеток, которые отсутствуют у микоплазм (у них нет клеточных стенок). Поэтому Mycoplasma spp. имеет природную устойчивостью к β-лактамам;
    — У большинства грамотрицательных бактерий клеточная стенка непроницаема для макролидов, поэтому они обладают природной устойчивостью к этому классу антибиотиков.

Приобретенной .
Эта устойчивость развивается вследствие мутаций микроорганизмов либо при передаче генов от резистентных бактерий к чувствительным бактериям.

Мутации бактериальных клеток приводят к спонтанному появлению резистентных бактериальных клеток. При применении антибиотиков происходит уничтожение чувствительных бактериальных клеток и размножение устойчивых бактерий.
Вследствие этого может образоваться популяция состоящая целиком из резистентных микроорганизмов.

Основным источником генетической информации в бактериальной клетке является хромосома, которая в большинстве случаев образована единственной замкнутой циркуляторной молекулой ДНК. Содержащие в ней гены обеспечивают жизнедеятельность бактерии практически в любых обстоятельствах.

В тоже время, во многих (возможно, что и во всех) бактериях имеются дополнительные молекулы ДНК, получившие название плазмид. По размеру они меньше хромосомной ДНК, не связаны с ней и обычно воспроизводятся отдельно от нее. Гены, которые переносятся плазмидами, чаще всего не являются жизненно необходимыми для выживания бактерий в обыкновенных условиях, но могут придавать клеткам-носителям преимущества в борьбе за существование в некоторых особых обстоятельствах.

Полезные свойства, которые передаются плазмидами, включают в себя:

  • Фертильность: способность к конъюгации и передаче генетической информации другим бактериям;
  • Резистентность к антибиотикам: большинство случаев устойчивости к антибиотикам, которые встречаются в клинических условиях, опосредованы плазмидами;
  • Способность к выработке бактериоцинов – белков, ингибирующих другие бактерии, которые являются экологическими конкурентами данного микроорганизма;
  • Выработку токсинов;
  • Иммунитет к некоторым бактериофагам;
  • Способность использовать необычные сахара и другие субстраты в качестве продуктов питания.

Плазмиды различаются по своим размерам, составу и совместимости. Совместимые плазмиды могут сосуществовать в одной и той же бактерии-хозяине, в то время как несовместимые – нет.

Третьим источником генетической информации в бактериальной клетке являются бактериофаги (или просто – фаги). Бактериофаги – это вирусы, инфицирующие бактерии. Большинство фагов способно атаковать сравнительно небольшое число штаммов определенных бактерий, то есть имеет узкий и весьма специфический круг потенциальных жертв.

Различают две основные группы фагов:

  • Вирулентные фаги, которые неминуемо уничтожают любую инфицированную ими бактерию, в результате из каждой лизированной клетки высвобождается ряд новых частичек фагов;
  • Умеренные (лизогенетические) фаги, которые могут либо лизировать, либо лизогенировать инфицированные бактериальные клетки.
    При лизогении геномы бактерий и умеренного фага сосуществуют в виде единой хромосомы, в которой ДНК хромосомы бактерии и передается по наследству дочерним клеткам. Такой «спящий» фаг получил название профага.
    Тем не менее, на этой стадии некоторые гены профага могут экспрессироваться и придавать новые свойства (в частности, резистентность к антибиотикам) клетке-хозяину. На определенном этапе (во время одного из каждых несколько тысяч делений бактерии) профаг вступает в литический цикл с последующим разрушением бактерии-хозяина и высвобождением новых фаговых частичек в окружающую среду.

Передача генов, кодирующих резистентность, от резистентных бактерий чувствительным микроорганизмам, является более эффективным механизмом приобретения резистентности.

Такая передача осуществляется тремя путями:

  • При трансформации свободная ДНК погибшей антибиотикорезистентной бактериальной клетки захватывается из окружающей среды антибиотикочувствительной бактерией-реципиентом;
  • Трансдукция включает в себя случайную инкорпорацию бактериальной ДНК частичкой бактериофага во время литического цикла фага. При этом ДНК может быть как хромосомной, так и плазмидной. В последующем частичка фага переносит бактериальную ДНК в следующую клетку, которая она инфицирует;
  • Коньюгация предполагает физический контакт между двумя бактериями.
    В то время, когда два микроорганизма прикрепляются один к другому, происходит односторонняя передача ДНК от клетки-донора клетке реципиенту. Способность к конъюгации зависит от соответствующих плазмид или транспозонов в клетке-доноре.

Наличие перечисленных механизмов передачи генетической информации означает, что не только мутации и селекция определяют эволюцию бактерий. Например, ранее чувствительная к антибиотикам бактерия может при конъюгации приобрести плазмиду, содержащую гены, кодирующие резистентность к нескольким различным антибиотикам. В результате в течение короткого промежутка времени в данной экологической нише может сформироваться пул полирезистентных микроорганизмов.

Основные механизмы, с помощью которых развивается приобретенная устойчивость к антибиотикам:

  • Разрушение или модификация антибиотика;
  • Меняется мишень для действия антибиотика;
  • Уменьшается проницаемость клеточной стеки для антибиотика;
  • Активное выведение антибиотика из бактериальной клетки;
  • Приобретается новый метаболический путь, на который не влияет антибиотик.

Наиболее важным из этих механизмов является разрушение антибиотика бактериальными клетками (микроорганизмы способны выделять ферменты разрушающие антибиотик). Пример этому служит развитие резистентности к β-лактамным антибиотикам, широко применяемым в клинической практике.

Бактериальные ферменты, разрушающие β-лактамазные антибиотики, получили название β-лактамаз. В связи со способностью гидролиза тех или иных β-лактамных антибиотиков различают пенициллиназы, цефолоспориназы, карбапенемазы и т. д.

Если гены, кодирующие выработку β-лактамаз, находятся в хромосомах, то начинают распространяться резистентные клоны бактерий.
Плазмидная локализация генов, кодирующих выработку β-лактамаз, обуславливает быстрое внутри и межвидовое распространение резистентности.

Практически все грамотрицательные бактерии вырабатывают β-лактамазы (гены локализуются в хромосомах). Опосредованные плазмидами β-лактамазы широко распространены не только среди грамотрицательных микроорганизмов, но и у стафилококков.

Синтезируемые бактериями β-лактамазы могут быть чувствительными и нечувствительными к ингибиторам β-лактамаз.
Ингибиторы β-лактамаз это вещества, которые связываются с β-лактамазами и подавляют их активность.
Плазмидные β-лактамазы грамотрицательных бактерий чувствительны к ингибиторам, а хромосомные, — как правило нет. Некоторые хромосомные β-лактамазы грамотрицательных бактерий эффективно гидролизуют практически все β-лактамные антибиотики, включая карбапенемы.

Также бактериальные клетки могут выделять ферменты модифицирующие антибиотик. В результате этого антибиотик утрачивает возможность связываться со своими мишенями в бактериальной клетке и теряет свою эффективность. Примером служит развитие резистентности к аминогликозидам у грамотрицательных бактерий семейства Enterobacteriacea, когда антибиотики инактивируются в результате ацетилирования, аденилирования или фосфорилирования.

Резистентность может развиваться, когда изменяется мишень для действия антибиотика. Примером этого вида устойчивости может быть резистентность S.pneumoniae к пенициллину.

Существует механизм резистентности, когда антибиотик активно удаляется (выкачивается) с клетки с помощью насосов. Примером служит приобретение устойчивости к тетрациклинам. Тетрациклины, попадая вовнутрь клетки, изгоняются из нее наружу и не успевают связаться со своими мишенями (рибосомами).

Классическим образцом резистентности, опосредованной действием подобных насосов, является разветвленная перекрестная устойчивость некоторых штаммов Pseudomonas auruginosa к β-лактамам, фторхинолонам, тетрациклинам и хлорамфениколу.
Долгое время она приписывалась нарушению проницаемости бактерий для этих антимикробных препаратов. В настоящее время установлено, что она связана с оператором MexAmexBopr M, кодирующим систему изгнания указанных антибиотиков из микробной клетки. Если инактивировать эту систему, то синегнойные палочки становятся высокочувствительными ко всем перечисленным препаратам.

Резистентность может развиваться при нарушении проницаемости бактерий для антибиотиков. Например β-лактамные антибиотики проникают в грамотрицательные бактерии через поры посредством диффузии. Уменьшение числа или радиуса пор приводит к снижению чувствительности бактерий к этим антибиотикам.

Также резистентность может возникнуть, если у бактерий сформируется новый метаболический путь, на который не влияет антибиотик. Например, S. аureus способен образовать дополнительный белок, который полноценно синтезирует клеточную стенку стафилококка и вызывает устойчивость к антистафилококковым пенициллинам (оксациллину и метициллину и), и ко всем β-лактамным антибиотикам.

Описанные механизмы отнюдь не исчерпывают тему приобретения и передачи антибиотикорезистентности. Они дают лишь некоторое представление о способности мира микробов приспосабливаться к изменившимся условиям внешней среды и, прежде всего, — к применению антибиотиков.

Рекомендации по применению антибактериальной терапии для различных инфекций опираются на результатах микробиологических исследований. Такие исследования дают возможность отслеживать чувствительность антибиотиков к ключевым возбудителям заболевания, отслеживать динамику изменения чувствительности, вносить коррективы в стандарты лечения.

На практике различают резистентность возбудителей внебольничных и госпитальных инфекций. При небольшом уровне резистентности эффективность антибактериальной терапии не снижается. Однако лечение становится неэффективным при превышении определенного порогового уровня. Для внебольничных пневмококков пороговый уровень примерно 20-30% резистентных штаммов.

Для госпитальных возбудителей, в результате более широкого применения антибиотиков, формируются высокорезистентные штаммы, которые нередко устойчивы к антибиотикам нескольких классов.
Выраженность и характер резистентности зависит от профиля отделения и традиций использования антибиотиков в конкретном отделении больницы. При этом резистентность будет отличаться не только в разных стационарах, но и в разных отделениях одной и той же больницы.
Поэтому выработка универсальных рекомендаций по терапии госпитальных инфекций вряд ли возможна и должна строиться с учетом микробиологического мониторинга за ситуацией, сложившейся в конкретном отделении.

Распространению резистентных бактерий во многом способствует в медицине.

Неадекватное использование антибиотиков может быть связано как:

  • С действием врача. Назначение этих медикаментов при и лихорадочных состояниях неинфекционной природы, нерациональная антибиотикотерапия (по длительности, дозировкам, кратности введения, выбору конкретного препарата и т. д.).
  • С действием пациента (несоблюдение полного курса , самолечение остатками не употребленных лекарств и т.д.).

Однако антибиотики используют не только в медицине. Широкое применение они нашли в сельском хозяйстве и животноводстве, причем не только для лечения и профилактики инфекций, но и в качестве стимуляторов роста (животноводство). В последнем случае они обычно назначаются в субтерапевтических дозах. Несомненно, подобное применение – прямая дорога к возникновению и распространению резистентных бактерий.

Серьезную проблему представляет использование антибиотиков и в сельском хозяйстве при обработке антибиотиками больших площадей занятых сельскохозяйственными растениями с применением авиации и других технических средств. Дальнейшее их распространение происходит как среди обслуживающего персонала, так и через пищевую цепочку.

Сложность и многообразие механизмов устойчивости бактерий к антибиотикам стимулировали разработку различных мер по ограничению распространения и преодолению резистентности.

Перспективными подходами к преодолению резистентности являются:

  • Защита известных антибиотиков от разрушения ферментами бактерий или от удаления их из бактериальной клетки посредством мембранных насосов;
  • Применение иных антибиотиков выбранной группы. Например, уровень устойчивости большинства возбудителей госпитальных инфекций к гентамицину в несколько раз выше, чем к другому аминогликозиду антибиотику – амикацину;
  • Применение комбинации антибиотиков;
  • Проведение целевой и узконаправленной антибактериальной терапии;
  • Синтез новых соединений, относящихся к известным классам антибиотиков;
  • Поиск принципиально новых классов антибактериальных препаратов.

Литература: Инфекции и антибиотики И. Г. Березняков. 2004 год. Харьков.

В лекции рассмотрены основные методы определения чувствительности in vitro микроорганизмов к антимикробным препаратам (диско-диффузионный, Е-тестов, методы разведения). Отражены подходы к эмпирическому и этиотропному назначению антибиотиков в клинической практике. Обсуждены вопросы интерпретации результатов определения чувствительности с клинической и микробиологической точек зрения.

В настоящее время в клинической практике существуют два принципа назначения антибактериальных препаратов: эмпирическое и этиотропное. Эмпирическое назначение антибиотиков основано на знаниях о природной чувствительности бактерий, эпидемиологических данных о резистентности микроорганизмов в регионе или стационаре, а также результатах контролируемых клинических исследований. Несомненным преимуществом эмпирического назначения химиопрепаратов является возможность быстрого начала терапии. Кроме того, при таком подходе исключаются затраты на проведение дополнительных исследований.

Однако при неэффективности проводимой антибактериальной терапии, при нозокомиальных инфекциях, когда затруднительно предположить возбудителя и его чувствительность к антибиотикам стремятся проводить этиотропную терапию. Этиотропное назначение антибиотиков предполагает не только выделение возбудителя инфекции из клинического материала, но и определение его чувствительности к антибиотикам. Получение корректных данных возможно только при грамотном выполнении всех звеньев бактериологического исследования: от взятия клинического материала, транспортировки его в бактериологическую лабораторию, идентификации возбудителя до определения его чувствительности к антибиотикам и интерпретации полученных результатов.

Вторая причина, обусловливающая необходимость определения чувствительности микроорганизмов к антибактериальным препаратам - это получение эпидемиологических данных о структуре резистентности возбудителей внебольничных и нозокомиальных инфекций. В практике эти данные используют при эмпирическом назначении антибиотиков, а также для формирования больничных формуляров.

Методы определения чувствительности к антибиотикам

Методы определения чувствительности бактерий к антибиотикам делятся на 2 группы: диффузионные и методы разведения.

При определении чувствительности диско-диффузионным методом на поверхность агара в чашке Петри наносят бактериальную суспензию определенной плотности (обычно эквивалентную стандарту мутности 0,5 по McFarland) и затем помещают диски, содержащие определенное количество антибиотика. Диффузия антибиотика в агар приводит к формированию зоны подавления роста микроорганизмов вокруг дисков. После инкубации чашек в термостате при температуре 35 о -37 о С в течение ночи учитывают результат путем измерения диаметра зоны вокруг диска в миллиметрах ().

Рисунок 1. Определение чувствительности микроорганизмов диско-диффузионным методом.

Определение чувствительности микроорганизма с помощью Е-теста проводится аналогично тестированию диско-диффузионным методом. Отличие состоит в том, что вместо диска с антибиотиком используют полоску Е-теста, содержащую градиент концентраций антибиотика от максимальной к минимальной (). В месте пересечения эллипсовидной зоны подавления роста с полоской Е-теста получают значение минимальной подавляющей концентрации (МПК).

Рисунок 2. Определение чувствительности микроорганизмов с помощью Е-тестов.

Несомненным достоинством диффузионных методов является простота тестирования и доступность выполнения в любой бактериологической лаборатории. Однако с учетом высокой стоимости Е-тестов для рутинной работы обычно используют диско-диффузионный метод.

Методы разведения основаны на использовании двойных последовательных разведений концентраций антибиотика от максимальной к минимальной (например от 128 мкг/мл, 64 мкг/мл, и т.д. до 0,5 мкг/мл, 0,25 мкг/мл и 0,125 мкг/мл). При этом антибиотик в различных концентрациях вносят в жидкую питательную среду (бульон) или в агар. Затем бактериальную суспензию определенной плотности, соответствующую стандарту мутности 0,5 по MсFarland, помещают в бульон с антибиотиком или на поверхность агара в чашке. После инкубации в течение ночи при температуре 35 о -37 о С проводят учет полученных результатов. Наличие роста микроорганизма в бульоне (помутнение бульона) или на поверхности агара свидетельствует о том, что данная концентрация антибиотика недостаточна, чтобы подавить его жизнеспособность. По мере увеличения концентрации антибиотика рост микроорганизма ухудшается. Первую наименьшую концентрацию антибиотика (из серии последовательных разведений), где визуально не определяется бактериальный рост принято считать минимальной подавляющей концентрацией (МПК) . Измеряется МПК в мг/л или мкг/мл ().

Рисунок 3. Определение значения МПК методом разведения в жидкой питательной среде.

Интерпретация результатов определения чувствительности

На основании получаемых количественных данных (диаметра зоны подавления роста антибиотика или значения МПК) микроорганизмы подразделяют на чувствительные, умеренно резистентные и резистентные (). Для разграничения этих трех категорий чувствительности (или резистентности) между собой используют так называемые пограничные концентрации (breakpoint) антибиотика (или пограничные значения диаметра зоны подавления роста микроорганизма).



Рисунок 4. Интерпретация результатов определения чувствительности бактерий в соответствии со значениями МПК.

Пограничные концентрации не являются неизменными величинами. Они могут пересматриваться, в зависимости от изменения чувствительности популяции микроорганизмов. Разработкой и пересмотром критериев интерпретации занимаются ведущие специалисты (химиотерапевты и микробиологи), входящие в специальные комитеты. Одним из них является Национальный комитет по клиническим лабораторным стандартам США (National Committee for Clinical Laboratory Standards - NCCLS). В настоящее время стандарты NCCLS признаны в мире и используются как международные для оценки результатов определения чувствительности бактерий при многоцентровых микробиологических и клинических исследованиях.

Существуют два подхода к интерпретации результатов определения чувствительности: микробиологический и клинический. Микробиологическая интерпретация основана на анализе распределения значений концентраций антибиотика, подавляющих жизнеспособность бактерий. Клиническая интерпретация основана на оценке эффективности антибактериальной терапии.

Чувствительные микроорганизмы (susceptible)

Клинически к чувствительным относят бактерии (с учетом параметров, полученных in vitro ), если при лечении стандартными дозами антибиотика инфекций, вызываемых этими микроорганизмами, наблюдают хороший терапевтический эффект.

При отсутствии достоверной клинической информации подразделение на категории чувствительности базируется на совместном учете данных, полученных in vitro , и фармакокинетики, т.е. на концентрациях антибиотика, достижимых в месте инфекции (или в сыворотке крови).

Резистентные микроорганизмы (resistant)

К резистентным (устойчивым) относят бактерии, когда при лечении инфекции, вызванной этими микроорганизмами, нет эффекта от терапии даже при использовании максимальных доз антибиотика. Такие микроорганизмы имеют механизмы резистентности.

Микроорганизмы c промежуточной резистентностью (intermediate)

Клинически промежуточную резистентность у бактерий подразумевают в случае, если инфекция, вызванные такими штаммами, может иметь различный терапевтический исход. Однако лечение может быть успешным, если антибиотик используется в дозировке, превышающей стандартную, или инфекция локализуется в месте, где антибактериальный препарат накапливается в высоких концентрациях.

С микробиологической точки зрения к бактериям с промежуточной резистентностью относят субпопуляцию, находящуюся в соответствии со значениями МПК или диаметра зон, между чувствительными и резистентными микроорганизмами. Иногда штаммы с промежуточной резистентностью и резистентные бактерии объединяют в одну категорию резистентных микроорганизмов.

Необходимо отметить, что клиническая интерпретация чувствительности бактерий к антибиотикам является условной, поскольку исход терапии не всегда зависит только от активности антибактериального препарата против возбудителя. Клиницистам известны случаи, когда при резистентности микроорганизмов, по данным исследования in vitro , получали хороший клинический эффект. И наоборот, при чувствительности возбудителя может наблюдаться неэффективность терапии.

В определенных клинических ситуациях, когда недостаточно результатов исследования чувствительности обычными методами, определяют минимальную бактерицидную концентрацию.

Минимальная бактерицидная концентрация (МБК) - наименьшая концентрация антибиотика (мг/л или мкг/мл), которая при исследовании in vitro вызывает гибель 99,9% микроорганизмов от исходного уровня в течение определенного периода времени.

Значение МБК используют при терапии антибиотиками, обладающими бактериостатическим действием, или при отсутствии эффекта от антибактериальной терапии у особой категории больных. Частными случаями для определения МБК могут быть, например, бактериальный эндокардит, остеомиелит или генерализованные инфекции у пациентов с иммунодефицитными состояниями.

В заключение хотелось бы отметить, что на сегодняшний день не существует методов, которые позволили бы с абсолютной достоверностью прогнозировать клинический эффект антибиотиков при лечении инфекционных болезней. Однако, данные результатов определения чувствительности могут служить хорошим ориентиром клиницистам для выбора и коррекции антибактериальной терапии.


Таблица 1. Критерии интерпретации чувствительности бактерий

Открытию антибиотиков человечество обязано Александру Флемингу, который первым в мире смог выделить пенициллин. «В тот день, когда я проснулся утром 28 сентября 1928 года, я, конечно, не планировал совершать своим открытием первого в мире антибиотика революцию в медицине… Однако, похоже, именно это я и сделал», - говорил сам ученый.

Труды Флеминга были оценены по заслугам. Вместе с Эрнстом Борисом Чейном и Ховардом Уолтером Флори, которые занимались очисткой пенициллина, он был удостоен Нобелевской премии.

Образцы той самой плесени, которую вырастил Флеминг в 1928 году, были отправлены многим знаменитостям - среди них некоторые ученые-современники, а также Папа Римский Пий XII, Уинстон Черчилль и Марлен Дитрих. Не так давно уцелевший и дошедший до нас фрагмент плесени был продан на одном из лондонских аукционов - стоимость образца составила 14 617 долларов США.

Стремительное развитие

Начиная с 1940-х годов, новые антибиотики стали появляться один за другим: за пенициллином последовали тетрациклин, эритромицин, метициллин, ванкомицин и многие другие. Эти препараты в корне изменили медицину: заболевания, в большинстве случаев считавшиеся смертельными, теперь стало возможно вылечивать. Так, например, до открытия антибиотиков почти в трети случаев пневмония оказывалась смертельной, после начала использования пенициллина и других препаратов смертность сократилась до 5 %.

Однако чем больше появлялось антибиотиков и чем шире они применялись, тем чаще встречались бактериальные штаммы, устойчивые к действию этих препаратов. Микроорганизмы эволюционировали, приобретая резистентность к антибиотикам. Устойчивый к пенициллину пневмококк появился в 1965 году, а резистентный к метициллину золотистый стафилококк, который и по сей день остается одним из возбудителей наиболее опасных внутрибольничных инфекций, был обнаружен в 1962 году, всего через 2 года после открытия метициллина.

Появление и широкое использование антибиотиков действительно ускорило процесс формирования мутаций, отвечающих за резистентность, но не инициировало его. Бактериальная устойчивость (точнее, мутации, отвечающие за нее) появилась задолго до того, как люди начали использовать антибиотики. Так, бактериальный штамм, ставший причиной дизентерии у одного из солдат, умерших во время Первой мировой войны, был устойчив и к пенициллину, и к эритромицину. Эритромицин же был открыт лишь в 1953 году.

При этом количество бактерий, приобретающих устойчивость к антибиотикам, ежегодно увеличивается, а антибиотики новых классов, обладающие принципиально новым механизмом действия, практически не появляются.

Последний бастион

Особую опасность представляют супербактерии, которые устойчивы абсолютно ко всем существующим антибиотикам. До недавнего времени универсальным оружием, которое помогало во всех безнадежных случаях, был антибиотик колистин. Несмотря на то что он был открыт еще в 1958 году, он успешно справлялся со многими бактериальными штаммами, которые обладали множественной лекарственной устойчивостью.

Из-за того, что колистин высокотоксичен для почек, его назначали лишь в безнадежных случаях, когда другие препараты оказывались бессильны. После 2008 года и этот бастион пал - в организме заболевших пациентов стали обнаруживать бактерии, устойчивые к колистину. Микроорганизм был найден у пациентов в Китае, странах Европы и Америки. К 2017 году зарегистрировано несколько смертей от инфекции, вызванной супербактериями, - помочь таким пациентам не смог ни один антибиотик.

Причина в пациентах

В 2015 году Всемирная организация здравоохранения провела опрос среди жителей 12 стран. В нем приняли участие почти 10 тысяч человек. Всем участникам нужно было ответить на вопросы о применении антибиотиков и развитии устойчивости к этим препаратам.

Оказалось, что почти две трети опрошенных лечат с помощью антибиотиков грипп, а около 30 % прекращают принимать антибиотики при первых улучшениях. Респонденты продемонстрировали удивительное невежество не только в правилах приема антибиотиков, но и в вопросах, касающихся антибиотикоустойчивости. Так, 76 % участников опроса были уверены, что устойчивость приобретают не бактерии, а организм самого пациента. 66 % считают, что, если принимать антибиотики, то антибиотикоустойчивая инфекция не страшна.

Все это свидетельствует о том, что люди знают об антибиотиках и резистентности к ним микроорганизмов удручающе мало, а угрозу того, что эти лекарственные препараты перестанут работать, не принимают всерьез.


Соблюдайте правила

Между тем, вероятность того, что уже в этом веке человечество останется без антибиотиков, достаточно высока. Эксперты ВОЗ и другие специалисты в области здравоохранения убеждают общество пользоваться антибиотиками с умом.

Прежде всего стоит помнить: лекарство должен назначать врач, а сам антибиотик - продаваться по рецепту. Курс антибиотиков нужно проходить целиком, а не прекращать прием лекарства после первых улучшений. В том случае, если после завершения лечения у вас остаются неиспользованные таблетки, не нужно предлагать их своим друзьям и родным. В каждом конкретном случае назначить лекарство должен врач, и, возможно, ваши препараты не подойдут другим людям.

Фармпроизводителей же ВОЗ стимулирует активнее заниматься разработкой новых антибиотиков, подчеркивая, что сейчас в разработке находится около полусотни антибиотиков, лишь 8 (!) из которых относятся к инновационным препаратам. Эксперты подчеркивают, что этого количества явно недостаточно для обеспечения человечества необходимыми лекарствами - ведь по статистике только 14 % лекарств доходят до потребителя после всех этапов клинических испытаний.

Елена Безрукова



Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.