Аутоиммунные реакции и заболевания. Аутоиммунные процессы в организме

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Аутоиммунные болезни. Механизмы развития. Клинические формы. Аутоантигены

Аутоиммунные болезни

Аутоиммунные заболевания - это группа болезней, при которых происходит разрушение органов и тканей организма под действием собственной иммунной системы.

Основой аутоаллергических (аутоиммунных) заболеваний (АЗ) служат повышенные иммунные реакции на молекулярные компоненты собственных тканей и органов, которые выступают в роли антигенов.

Механизм ра звития аутоиммунных заболеваний

Причины и механизмы развития АЗ разнообразны. По происхождению различают первичные, генетически обусловленные АЗ и вторичные, возникшие в результате вирусных инфекций, воздействий лекарств и других факторов. Аутоаллергические (аутоиммунные) реакции развиваются по закономерностям, сходным с экзогенной аллергией и включают немедленные (повышенная чувствительность немедленного типа - ПЧНТ) и замедленные (повышенная чувствительность замедленного типа - ПЧЗТ) реакции всех типов.

Из-за общности механизмов их развития и сущности процессов аутоиммунные реакции правильнее обозначать как аутоаллергические.

Анафилактические , IgE-зависимые реакции для АЗ не характерны.

Цитотоксические реакции обычно сопровождаются аутоантителами против мембран клеток крови, которые разрушаются при участии комплемента. Такой тип реакций наблюдается при аутоиммунных анемиях, нейтропениях, системной красной волчанке (лимфопения).

Иммунокомплексные р еакции приводят к поражению сосудистой сети - васкулитам. Обычно они развиваются, когда образуется много иммунных комплексов мелких размеров (с низкоафинными антителами). Эти комплексы слабо элиминируются из кровотока, чему способствует недостаточность CR1- рецепторов эритроцитов, связывающих C3b-компонент комплемента в иммунном комплексе, а также снижение активности фагоцитов, особенно в селезенке. Иммунные комплексы откладываются в стенке сосудов (капилляров). Органная локализация (суставы, почки, легкие) их отложений обычно зависит от вида антигена, входящего в их состав. Мелкие комплексы проникают через базальную мембрану и откладываются субэпителиально (поражения почек больше), а крупные - под базальной мембраной эпителия и субэндотелиально (прогноз лучше, поражение почек меньше).

Антирецепторные реакции обусловлены связыванием антител с функционально активными клеточными рецепторами. Патология возникает из-за возникшего усиления или снижения функций соответствующих клеток мишеней: тиротоксикоз, миастения, инсулинзависимый диабет, пернициозная анемия, идиопатическая крапивница.

Гиперчувствительность замедленного типа (Т-клеточные реакции) лежит в основе многих АЗ. Причем преобладает ее туберкулиновый вариант с инфильтрацией пораженной ткани или органа мононуклеарами. Нередко этот вариант с преобладанием в инфильтратах CD4 1 типа и CD8-лимфоцитов наблюдается в поздние фазы аутоаллергического процесса, когда разрушаются островки поджелудочной железы при диабете, фолликулы щитовидной железы при тироидитах и структуры других органов.

Для ра звития АЗ необходим ряд условий

Генетическая предрасположенность, ассоциированная с генами, HLA-системы и соответствующим фенотипом, реализуемая через взаимодействие клеток СИ, клеток-мишеней и тропных к ним агентов (вирусов, веществ и др.);

Наличие неблагоприятных химических, физических и биологических факторов, стимулирующих аутоаллергию;

Воздействие тропных к клеткам-мишеням агентов (например, вирусов, имею- щих общие эпитопы с аутологичными органоспецифическими молекулами - гормонами, ферментами, цитокинами и др.); аутоиммунный аутоаллергический заболевание клинический

Генетически обусловленное наличие достаточно аффинных вариантов вариабельных цепей (и активных центров) рецепторов на Т- и В-лимфоцитах к органоспецифическим молекулам, а поэтому потенциальная способность лимфоцитов образовывать клоны аутореактивных клеток.

Функциональность иммунной системы во многом определяется наследственными факторами, поэтому многие аутоиммунные заболевания передаются из поколения в поколение. Возможно нарушение функции иммунной системы под действием внешних факторов, таких как инфекции, травмы, стресс. На данный момент считается, что неблагоприятные внешние факторы, как таковые не способны вызвать развития аутоиммунного заболевания, а лишь повышают риск его развития у лиц с наследственной предрасположенностью к патологии этого типа.

В норме в организме против клеток всех тканей имеются в небольшом количестве естественные аутоантитела класса IgM , синтезируемые CD5 +В1- лимфоцитами, которые не вызывают патологических процессов, а стимулируют регенерацию этих тканей.

Для аутоаллергических, повышенных реакций, необходимо

· увеличение их количества

· появление антител класса IgG,

· усиление их специфичности, авидности против определенных структур.

Например, при тиротоксикозе - это антитела против тироглобулиновых рецепторов тироцитов, стимулирующие синтез гормонов щитовидной железы. При аутоиммунной гемолитической анемии - антитела против эритроцитов, при нейтропении - против нейтрофилов и т.д.

Клетки эндокринных органов служат примером структур («забарьерные органы»), у которых отсутствовал контакт с клетками системы иммунитета 30 в эмбриональном периоде, когда формируется естественная толерантность. Поэтому к ним и их молекулам легко образуются антитела в случае повреждения любым агентом - вирусами, бактериями или даже физическим, механическим воздействием. Для этого достаточно поступления молекул-антигенов поврежденного эндокринного органа в кровь или лимфу и последующего контакта с иммунокомпетентными клетками.

Накопление высокоспецифичных аутореактивных клонов Т- и В-лимфоцитов в связи со стимуляцией единичных всегда персистирующих аутоспецифических клеток служит основой развития аутоаллергической реакции. Такие Т-лимфоциты, несущие малоспецифичные рецепторы, тоже существуют в нор- ме. Однако, даже если проникают и входят в контакт с клетками эндокринных органов, то подвергаются апоптозу (программированная клеточная смерть).

Дело в том, что клетки «забарьерных органов», к которым относятся эндокринные, несут на поверхности LCD95 (лиганд для Fas-рецептора CD95), который при взаимодействии с рецептором CD95 на Т-лимфоците вызывает его апоптоз. Если клетки эндокринных органов, по какой-то причине (возможно, из-за иммуномо- дуляции вирусом) утрачивают LCD95 (это наблюдается при тироидите Хашимо- то), то могут разрушаться аутореактивными Т-лимфоцитами.

Особенности запуска аутоаллергических заболеваний

Вирусы, бактерии (их токсины), экологически вредные агенты могут за- пускать аутоаллергические заболевания несколькими путями:

1) повреждая клетки и вызывая выход «забарьерных» антигенов в лимфу и кровь, которые прямо стимулируют аутоаллергическую реакцию;

2) активируя те Т- и В-лимфоциты, рецепторы которых перекрестно реагируют с клетками тканей и органов, несущих эпитопы, общие с инфекционными агентами (антигенная мимикрия);

3) действуя как суперантигены и вызывая поликлональную активацию лимфоцитов, т.е. связываясь с V-цепью Т-клеточного рецептора и активируя до 30% Т-лимфоцитов, выделяющих при этом цитокины воспаления (характерно для токсинов бактерий);

4) вызывая, в связи с аллергией к инфекционным антигенам, активацию Т- и В-лимфоцитов с образованием антител различной специфичности и широкого спектра цитокинов, запускающих воспаление, и/или приводящих к стойкой иммуномодуляции (гамма-интерферон, индуцируемый вирусом, приводит к появлению на -клетках поджелудочной железы HLA-антигенов II класса);

5) индуцируя мутации и/или активацию генов цитокинов, участвующих в воспалении и повреждении клеток;

6) индуцируя изменение хоминга Т-лимфоцитов в связи с подавлением или стимуляцией молекул адгезии и хемокиновых рецепторов;

7) вызывая или ингибируя апоптоз определенных субпопуляций клеток СИ и/или клеток-мишеней;

8) нарушая регуляцию идиотип-антиидиотипической сети;

9) стимулируя образование В-лимфоцитами абзимов - антител с ферментативной активностью, повреждающих клеточные мембраны.

Примеры аутоанти генов, аутоантител и их эффекты

Системная красная волчанка. При СКВ аутоантигеном является собственная ДНК.Аутоантитела- антиядерные и анти-ДНК. Вызывают клеточный лизис и образование иммунных комплексов, активацию комплемента, повреждение клеток.

Ревматоидный артрит - IgM антитела против аутологичного IgG(РФ-ревматоидный фактор), образование иммунных комплексов, которые оседают преимущественно в суставных полостях.

Вульгарная пузырчатка IgG4 - антитела к десмоглеину-3 (кадгерину) эпидермиса, отслойка эпидермиса.

Синдром Гудпасчера - антитела к II типу коллагена базальных мембран, эпителия, почек и легких, повреждение этих мембран.

Пернициозная анемия - антитела против внутреннего фактора Кастла, блокируют связывание витамина В12, индуцируют анемию.

Гипертироидизм (тиротоксикоз - болезнь Гревса-Базедова) - антитела к рецептору для тиротропного гормона стимулируют продукцию гормонов щитовидной железы - синдром тиротоксикоза (тахикардия, пучеглазие и др.).

Миастения гравис - антитела к ацетилхолиновому рецептору, блокируют передачу нервных импульсов на мышцу - атрофия, слабость мышц.

Инсулинзависимый диабет I типа - антитела к -клеткам поджелудочной железы, их ферментам - повреждение клеток.

Инсулинзависимый диабет II типа - антитела против рецепторов для инсулина - нарушение обмена.

Хроническая идиопатическая крапивница - антитела к Fc I типа (высоко- аффинный рецептор для IgE на базофилах) - дегрануляция базофилов - сыпи.

Аутоиммунная гемолитическая анемия - антиэритроцитарные антитела - лизис эритроцитов.

Клинические формы

Клиническое развитие болезни и симптомы заболевания могут служить источником полезной информации для установки диагноза аутоиммунной болезни. Для развития склеродермии характерно поражение кожи (очаги ограниченного отека, которые медленно подвергаются уплотнению и атрофии, формирование морщин вокруг глаз, сглаживание рельефа кожи), поражение пищевода с нарушением глотания, утончение концевых фаланг пальцев, диффузные поражение легких, сердца и почек. Для красной волчанки характерно появление на коже лица (на спинке носа и под глазами) специфического покраснения в виде бабочки, поражение суставов, наличие анемии и тромбоцитопении. При ревматизме характерно появление артрита после перенесенной ангины и более позднее формирование дефектов клапанного аппарата сердца.

Размещено на Allbest.ru

...

Подобные документы

    Связь аутоиммунитета с патологией. Тиреоидит Хасимото как пример поражения, связанного с продукцией аутоантител. Спектр аутоиммунных заболеваний, генетические факторы. Индуцированные и спонтанные аутоиммунные процессы, их стимулирование антигеном.

    реферат , добавлен 28.09.2009

    Понятие аутоиммунных заболеваний, их особенности и причины возникновения. Классификация аутоиммунных заболеваний с учетом места их локации, порядок диагностирования и методика составления схемы лечения. Меры подавления иммунной системы организма.

    доклад , добавлен 29.11.2009

    Основные механизмы формирования аутогрессии. Роль наследственности в развитии аутоиммунных болезней. Патогенез повреждений клеток и тканей при аутоиммунных болезнях, их виды. Понятие о коллагенезах. Системная красная волчанка как пример коллагенеза.

    презентация , добавлен 13.10.2015

    Классификация и дифференциация наследственных заболеваний. Генные и хромосомные болезни, болезни с наследственной предрасположенностью. Генетические карты человека, лечение и предупреждение некоторых наследственных болезней. Описание основных болезней.

    презентация , добавлен 16.11.2011

    Диагностика и лечение аутоиммунных заболеваний. Аутоиммунные патологии: дефицит антителообразования. Внутриклеточная вирусная инфекция, присоединяющиеся к клеткам лекарства, перекрестно реагирующие антигены и идиотопы. Влияние генетических факторов.

    презентация , добавлен 08.07.2009

    Аутоиммунный процесс как форма иммунного ответа, индуцированная аутоантигенными детерминантами в условиях нормы и патологии. Аутоиммунитет - один из механизмов поддержания гомеостаза. Особенности возникновения аутоиммунных реакций и заболеваний.

    презентация , добавлен 16.09.2013

    Классификация генных болезней. Проявления и причины возникновения генных (моногенных – в основе патологии одна пара аллельных генов) наследственных заболеваний, хромосомных болезней. Болезни с наследственным предрасположением (мультифакториальные).

    доклад , добавлен 02.12.2010

    Сущность и основные этапы исследования иммунопатологических процессов, обуславливающие их причины и предпосылки развития аутоиммунных реакций организма. СПИД как особая форма вторичного иммунодефицита, методы его лечения и профилактики, патогенез.

    презентация , добавлен 20.05.2010

    Структура и функции генов. История расшифровки механизма развития болезней с наследственным предрасположением. Понятие, сущность и причины мутаций. Характеристика хромосомных болезней и болезней нарушения обмена веществ (аминокислот, жиров и углеводов).

    реферат , добавлен 11.03.2010

    Основные признаки наследственной патологии. Оценка общих особенностей клинических проявлений наследственных болезней. Болезнь Дауна, нейрофиброматоз, ахондроплазия, хорея Гентингтона. Биохимические, иммунологические и иммуноферментные методы исследования.


АУТОИММУННЫЕ ЗАБОЛЕВАНИЯ Аутоиммунные заболевания развиваются в результате выработки антител, которые могут взаимодействовать с антигенами собственного организма. Это может происходить при: 1)демаскировании антигенов; 2) снятии толерантности: 3) при соматических мутациях; 4) недостаточности антиидиотипических антител; 5) нарушении распознавания "своего" посредством рецепторов, в качестве которых Т-лимфоциты используют антигены главного комплекса гистосовместимости.


Демаскирование антигенов Демаскирование антигенов наблюдается в высокодифференцированных органах при нарушении гистогематических барьеров (в головном мозге, хрусталике, яичке, щитовидной железе и др.). В этих органах имеются вещества, которые являются аутоантигенами, поскольку в период формирования иммунной толерантности и в последующем они были изолированы от иммунной ткани гистогематическими барьерами. При нарушении барьеров происходят демаскирование этих аутоантигенов и выработка против них аутоантител. Демаскирование аутоантигенов, скрытых внутри биологических макромолекул, отмечается и в органах, в которых специализированные барьеры отсутствуют. Под действием физических, химических и биологических факторов возможно появление потенциально аутоантигенных детерминант и возникновение аутоаллергической реакции


Снятие иммунной толерантности Снятие иммунной толерантности к гаптенам своего организма возможно при замене носителя гаптенов. Известно, что к большому числу антигенов своего организма В-лимфоциты не толерантны. Объясняется это различиями в условиях формирования иммунной толерантности у Т- и В-лимфоцитов. Однако в норме В-лимфоциты не вырабатывают аутоантитела к компонентам собственного организма, так как к ним толерантны Т-лимфоциты. При встрече с этими антигенами Т-лимфоциты не вступают в кооперацию с В- лимфоцитами, без чего нетолерантные В-лимфоциты не вовлекаются в иммунный ответ. Если в организм попадают макромолекулярные антигены, к которым присоединяются собственные гаптены, то Т-лимфоциты начинают реагировать на антигенные носители и кооперироваться с В- лимфоцитами, а последние в свою очередь начинают реагировать на гаптены своего организма, вошедшие в антигенный комплекс с чужеродным носителем. Ко многим веществам в организме поддерживается иммунная толерантность, в основе которой лежит активация антигенами Т- супрессоров. Неблагоприятные влияния на организм, а также наследственные нарушения могут вызвать снижение функции Т- супрессоров и развитие иммунного ответа против нормального компонента организма.


Соматические мутации Соматические мутации в различных органах могут привести к появлению клеток, обладающих антигенными свойствами по отношению к своему организму. В большинстве случаев это завершается быстрой элиминацией мутировавшего клона соматических клеток. Мутация иммуноцитов может стать причиной аутоиммунных заболеваний в связи с тем, что приводит к появлению "запретных" клонов, воспринимающих нормальные компоненты организма в качестве антигенов. Появление запретных клонов может происходить и другим путем. Поскольку в нормальном организме у В-лимфоцитов не формируется иммунная толерантность к антигенам своего организма, то мутации первично могут приводить к отмене функции супрессоров или появлению запретного клона хелперов. В результате нетолерантные В- лимфоциты начинают реагировать на нормальные компоненты тканей своего организма. К аутоиммунным заболеваниям, возникающим по этому типу, относят ревматоидный артрит, системную красную волчанку, аутоиммунную гемолитическую анемию и лейкопению. При ревматоидном артрите наблюдается выработка антител к собственному гамма-глобулину крови. В патогенезе системной красной волчанки ведущее значение имеют противоядерные аутоантитела, реагирующие с компонентами ядер клеток крови и тканей.


Недостаточность антиидиотипических антител Детерминанта антитела, реагирующая только с данным антигеном, имеет уникальное строение и сама является своеобразным антигеном идиотипом (от греч, idios своеобразный). Существование антиидиотипических антител было установлено экспериментально. Существует предположение, что аутоиммунный процесс может развиться из-за недостаточной активности клона, вырабатывающего антиидиотипические антитела к каким-либо аутоантителам. Данное предположение экспериментально подтверждено при аутоиммунном адъювантном артрите, вызываемом находящимися в адъюванте туберкулезными микобактериями, обладающими двумя антигенами, имеющими общность с антигенами протеогликанов хрящей суставов. Введение животным, больным адъювантным артритом, клонов иммуноцитов, несущих антиидиотипические антитела к противохрящевым антителам, предупреждает или прекращает заболевание


Нарушение распознавания свой- чужой Антигены главного комплекса гистосовместимости используются Т- лимфоцитами в качестве рецепторов иммунного распознавания. Это создает возможность ошибки распознавания на основе различной экспрессии антигенов этой системы в клеточных мембранах за счет нарушения селекции клонов иммуноцитов по этим антигенам, которое у Т-лимфоцитов обязательно происходит в вилочковой железе. Эти механизмы аутоиммунной патологии имеют место при аутоиммунных антиген-ассоциированных заболеваниях. В частности, при инсулин- зависимом диабете, когда Т-лимфоциты собственного организма убивают β- клетки островков поджелудочной железы, установлена явная связь с наследованием антигенов группы HLA-DR. Механизм аутоиммунного поражения при инфекции нецитопатогенными вирусами (вирус хориоменингита у мышей и вирус гепатита В у человека). Эти вирусы не вызывают гибели инфицированных клеток, но антигены вирусов экспрессируются зараженными клетками в составе антигенов МНС в своих мембранах, где распознаются Т-лимфоцитами, которые разрушают инфицированные клетки, вызывая тяжелое, иногда смертельное заболевание. Блокада активности Т-лимфоцитов при этих заболеваниях улучшает состояние заболевших, но они становятся вирусоносителями.


Теории возникновения атеросклероза Существует несколько теорий возникновения атеросклероза. Каждая выделяет ведущий фактор воздействия, которые несомненно значимы в комплексе. Принято считать, что атеросклероз возникает как «реакция на повреждение» слоя эндотелия, которое может быть вызвано разными причинами. В ответ на метаболические, механические, химические или инфекционные воздействия возникает местное воспаление и нарушение проницаемости эндотелия. Воспаление могут инициировать высокие гемодинамические нагрузки (которые вызывают разрушение интимы), токсины, иммунные комплексы, вирусы. Нарушение целостности эндотелия приводит к секреции факторов роста, миграции моноцитов и образованию жировых отложений. У пациентов с ИБС в период обострения, выявляется повышенное образование характерных для острой фазы воспаления реактантов и цитокинов с местным накоплением клеток воспаления. При хроническом повреждении стенки артерии в ней наблюдается инфильтрация макрофагами, Т- лимфоцитами, секретирующими интерферон, который подавляет синтез коллагена и пролиферацию ГМК. Подтверждением теории воспаления является повышение в плазме крови больных ИБС маркёров воспаления: С-реактивного белка, интерлейкина-6, интерлейкина-8 и др. В настоящее время определение в плазме крови повышенного уровня С-реактивного белка в сочетании с уровнем холестерина является маркёром развития атеросклероза и ИБС.


Теории возникновения атеросклероза Повреждение эндотелия сосудов усугубляется взаимодействием компонентов липидного обмена с иммунными факторами. У больных атеросклерозом установлен дисбаланс иммунологических показателей - высокая активность гуморального иммунитета и дефицит Т-клеток в периферической крови. У них обнаружено повышение уровня циркулирующих иммунных комплексов и иммуноглобулинов, а также снижение количества Т-лимфоцитов и их активности, хотя количество Т-супрессоров повышено. Сами ЛП обладают иммунорегуляторными свойствами: ЛПНП и ЛПОНП могут ингибировать иммунный ответ. Сочетание иммунного поражения сосудистой стенки с гиперлипидемией является реальным условием развития атеросклероза. Нарушения в антиоксидантной системе: процесс свободно- радикального окисления липидов вызывает ряд патологических проявлений (синдром пероксидации): повреждением мембран клеток и внутриклеточных органелл, нарушением активности антиоксидантных и мембранных ферментов, накоплением первичных и вторичных продуктов перекисного окисления липидов. Это приводит к окислению ЛП и фосфолипидов, распаду эластических волокон, индуцирует старение коллагена. Мембраны клеток эндотелия артерий очень уязвимы, потому что в их составе много легкоокисляемых фосфолипидов и они контактируют с относительно высокими концентрациями кислорода


Теории возникновения атеросклероза Ключевым в атеросклеротическом воспалении считается снижение рецепторного поглощения клетками. Его прямое следствие - накопление в стенке артериальных сосудов ЛПНП с дефицитом эссенциальных полиненасыщенных жирных кислот. Дефицит возникает потому, что их транспортной системой являются именно ЛПНП. На снижение поступления в клетки эссенциальных полиненасыщенных жирных кислот в них компенсаторно синтезируются собственная эйкозатриеновая кислота, и, как результат, появляются провоспалительные лейкотриены. Для образования бляшки необходимо поглощение ЛПНП макрофагами. Для этого накапливающиеся ЛПНП должны быть предварительно модифицированы с последующим возможным связыванием иммуноглобулинами. Этот процесс требует участия нейтрофильных лейкоцитов, высвобождается большое число активных радикалов, участвующих в реакциях перекисного окисления липидов. Именно этими реакциями, системой комплемента, изменением числа связанных с рецепторами сиаловых кислот, в конечном итоге, обеспечивается окисление накапливаемых в крови липопротеидов. В лизосомах макрофагов происходит деградация этих структур, но справиться с этим полностью они не могут. Негидролизованные структуры накапливаются вначале в лизосомах, далее занимают цитоплазму моноцитов, образуя "пенистые" клетки,


Требования к лекарственному соединению Химический реагент становится лекарством только в том случае, если: Химический реагент становится лекарством только в том случае, если: он хорошо всасывается достигает тканей-мишеней метаболизируется так, что сохраняется его фармакологическая активность в процессе метаболизации не возникает токсических продуктов


Основные понятия фармакокинетики Фармакокинетика это раздел фармакологии, изучающий процессы всасывания, распределения, связывания с белками, биотрансформации и выведения лекарственных веществ. Основные понятия: Скорость элиминации величина, которая определяет скорость удаления препарата из системного кровотока путем биотрансформации (метаболизации) и выведения. Абсорбция величина, описывающая скорость поступления лекарства в системный кровоток из места введения. Площадь под кривой: (AUC – area under the curve) – это интегральный параметр, характеризу ющий общее время нахождения лекарственного препарата в крови и его концентрацию, т.е. величина, характеризующая суммарное количество лекарственного средства в кровеносном русле после его принятия Биодоступность - количество достигшего плазмы крови неизмененного лекарственного вещества крови неизмененного лекарственного вещества по отношению к количеству исходной дозы. по отношению к количеству исходной дозы. За биодоступность в 100 % принимают За биодоступность в 100 % принимают величину поступления препарата в системный кровоток при внутривенном введении. величину поступления препарата в системный кровоток при внутривенном введении. AUC концентрация время


Лекарственная форма Лекарство употребляется не в виде активной субстанции, то есть химического вещества, которое обладает определенным физиологическим и биохимическим эффектом, а в виде лекарственной формы, то есть таблеток, капсул, инъекций и т.д. В состав лекарственной формы входит активная субстанция, носитель и дополнительные вещества В состав лекарственной формы входит активная субстанция, носитель и дополнительные вещества Таблетка помимо активной субстанции, может содержать: Таблетка помимо активной субстанции, может содержать: 1. Связующее вещество (целлюлоза) 2. Разжижающее вещество (микроцеллюлоза) 3. Антистатический агент (коллоидный кремнезем) 4. рН забуферивающие агенты 5. Смазочный материал (стеариновая кислота, луброл, полиоксиэтиленгликоль) и т.д. 6. Антиоксиданты 7. Консерванты Дополнительные вещества обеспечивают доставку активной субстанции, например, всасывание в нужном отделе желудочно- кишечного тракта, нормальные условия его сохранения и т.д. Например, наличие соединений, которые обеспечивают медленное растворение активной субстанции, дают возможность обеспечить пролонгированное действие лекарства


Одна и та же активная субстанция может быть представлена в нескольких формах Аморфная форма или различные кристаллические формы (запатентовано около 10 кристаллических форм омепразола), которые различаются по: 1. стабильности, 2. растворимости, 3. химической реакционноспособности, например, по скорости гидролиза или окисления, 4. механическим изменениям, например, таблетки крошатся при хранении (кинетически предпочтительная форма при этом может превращаться в термодинамически более стабильную) 5. различной чувствительности к распаду при высокой влажности) и т.д.


Эквивалентность генериков Фармацевтическая эквивалентность – эквивалентность по качественному и количественному составу лекарственных средств Фармацевтическая эквивалентность – эквивалентность по качественному и количественному составу лекарственных средств Фармакокинетическая эквивалентность (биоэквивалентность Фармакокинетическая эквивалентность (биоэквивалентность или сходная биодоступность), изученная на добровольцах, на больных или на животных; или сходная биодоступность), изученная на добровольцах, на больных или на животных; Клиническая терапевтическая эквивалентность, изученная по эффективности на больных людях; Клиническая терапевтическая эквивалентность, изученная по эффективности на больных людях; Клиническая терапевтическая эффективность лекарств со специальным вниманием к переносимости и безопасности при применении у пациентов с определенным патологическим состоянием. Клиническая терапевтическая эффективность лекарств со специальным вниманием к переносимости и безопасности при применении у пациентов с определенным патологическим состоянием.


Фармацевтическая эквивалентность Генерики и оригинальные препараты содержат одну и ту же активную субстанцию (содержание лекарственного средства не должно отличаться более чем на 5%) Генерики и оригинальные препараты содержат одну и ту же активную субстанцию (содержание лекарственного средства не должно отличаться более чем на 5%) Препарат А Препарат В Чистота 99,9% Одинаково ли действуют эти препараты? Это зависит от характера примесей.


Генерики и оригинальные препараты Препарат генерик – лекарственный препарат, срок действия патентной защиты на который уже закончился. Воспроизведенный лекарственный препарат – лекарственный продукт, обладающий доказанной терапевтической взаимозаменяемостью с оригинальным инновационным лекарственным средством аналогичного состава, выпускаемый производителем, но не разработчиком оригинального препарата и без лицензии разработчика.


Метаболизация лекарственного соединения: цитохромы Р-450 Метаболизация лекарственного соединения осуществляется системой монооксидаз, содержащих цитохром Р-450, совместно с другими ферментами, в частности моноаминоксидазой (МАО) и УДФ-глюкоронозилтрансферазой. Комплекс восстановленного гемопротеина Р-450 с окисью углерода имеет характерный максимум поглощения при 450 нм, что определило название фермента. Использование слова "цитохром" по отношению к гемопротеинам класса Р450 нельзя считать удачным, так как функция цитохромов - это перенос электронов, а не катализ монооксигеназных реакций. Комплекс восстановленного гемопротеина Р-450 с окисью углерода имеет характерный максимум поглощения при 450 нм, что определило название фермента. Использование слова "цитохром" по отношению к гемопротеинам класса Р450 нельзя считать удачным, так как функция цитохромов - это перенос электронов, а не катализ монооксигеназных реакций. В рекомендациях по номенклатуре семейства Р450, предложенной Д. Небертом, слово "цитохром" упоминается только при расшифровке обозначения CYP (т.е. cytochrome Р450), используемого при обозначении генов Р450. В настоящее время известно около 160 различных Р450, обнаруженных в животных, растениях, грибах, бактериях. Гемопротеин отсутствует только у строго анаэробных бактерий.


Реакции, осуществляемые монооксигеназами печени (цитохромами Р-450) Р450 наряду с монооксигеназной может проявлять и оксидазную активность, генерируя активные формы кислорода в виде супероксидного и гидроксильного радикалов, перекиси водорода. В связи с этим в литературе иногда Р450 называют оксидазой со смешанной функцией. А.И. Арчаков с сотрудниками обнаружили, что Р450 может функционировать и как истинная четырехэлектронная оксидаза, генерируя только воду из молекулы кислорода. Р450 обнаруживает и пероксидазную активность, используя в реакции окисления в качестве косубстратов вместо NAD(P)H органические перекиси или перекись водорода. Имеются данные, что Р450 может катализировать диоксигеназные реакции. Таким образом, характерной особенностью Р450 является множественность функций, но основной является монооксигеназная.


Свойства системы цитохромов Р-450 Прокариоты содержат растворимый Р450. Переход к эукариотическим системам (дрожжи, грибы) сопровождается встраиванием Р450 в мембрану. Все цитохромы Р450 высших организмов - мембранные ферменты. В эволюционном плане наиболее древней является бактериальная монооксигеназа. На промежуточной стадии эволюционной лестницы стоит митохондриальная гидроксилазная система надпочечников. Она имеет все признаки бактериальной растворимой системы и состоит из трех компонентов. Два ее компонента - FAD-содержащий флавопротеин (NADPH- или NADH-зависимая редуктаза) и негеминовый серосодержащий белок (адренодоксин) являются водорастворимыми ферментами и локализованы в матриксе митохондрий, третий - Р450, встроен в мембрану. Р450 играют важную роль в окислении многочисленных соединений, как эндогенных (стероиды, желчные кислоты, жирные кислоты, простагландины, лейкотриены, биогенные амины), так и экзогенных (лекарства, яды, продукты промышленного загрязнения, пестициды и т.п.), последние называют ксенобиотиками. По типу катализируемых реакций Р450 можно отнести к монооксигеназам внешнего типа. В присутствии доноров электронов (NAD(P)H) Р450 способен активировать молекулярный кислород, один атом которого затем внедряется в молекулу окисляемого субстрата, а другой восстанавливается до воды" R + AH + O2 = ROH + A + H2O R + AH + O2 = ROH + A + H2O где R - субстрат, ROH - продукт, AH - донор электронов. где R - субстрат, ROH - продукт, AH - донор электронов.


Реакции, осуществляемые цитохромами Р-450 Оксигеназные реакции, катализируемые цитохромом Р450, разнообразны. Одна из наиболее широко распространенных реакций окисления ксенобиотиков- реакция окислительного деалкилирования, которая сопровождается окислением алкильной группы, присоединенной к N-, O- или S-атомам. Второе место по распространенности принадлежит реакциям гидроксилирования циклических соединений, которые включают гидроксилирование ароматических, предельных и гетероциклических углеводородов. Р450 может также катализировать реакции гидроксилирования алифатических соединений, N- окисление, окислительное дезаминирование, реакции восстановления азо- и нитросоединений. Реакции окисления природных соединений включают w- окисление насыщенных жирных кислот, гидроксилирование стероидных гормонов, желчных кислот и холестерина, биосинтез простагландинов, перекисное окисление ненасыщенных жирных кислот.


Классификация цитохромов Р-450 Цитохромы Р450 млекопитающих представляют собой структурно и функционально различные изоферменты, кодируемые суперсемейством генов. Классификация Р450 основана на дивергентной эволюции и гомологии нуклеoтид/аминокислотной последовательностей. Суперсемейство разделено на семейства, подсемейства и индивидуальные гены. Цитохромы Р450, имеющие более 40% гомологии аминокислотных последовательностей объединяют в одно семейство, а имеющие более 59% гомологии – в одно подсемейство. При составлении номенклатуры не учитывалась каталитическая активность цитохромов, поэтому члены различных подсемейств могут иметь перекрывающуюся субстратную специфичность.


Классификация и обозначение цитохромов Р-450 Семейства цитохромов Р450 обозначают арабскими цифрами, подсемейства – латинской буквой и римскими цифрами. Отдельные изоферменты обозначают: сначала арабская цифра (семейство), далее латинская буква (подсемейство) и в конце - арабская цифра, соответствующая изоферменту. Например, изофермент цитохрома Р450, обозначающийся как CYP2D6, принадлежит к семейству 2, подсемейству IID, изофермент 6.


Структура цитохромов Р450 Сведения о первичной структуре, субстратной специфичности, индуцибельности, локализации в клетке, строении гена и многих других свойствах смотри в базе данных "Cytochrome P450, Database" (CPD). Сведения о первичной структуре, субстратной специфичности, индуцибельности, локализации в клетке, строении гена и многих других свойствах смотри в базе данных "Cytochrome P450, Database" (CPD). Молекулярная масса различных Р450 колеблется кДа. Мономеры гемопротеина состоят из одной полипептидной цепи, содержащей от 45 до 55% неполярных аминокислотных остатков. В отсутствие детергента они существует в виде агрегатов с молекулярной массой от 300 до 700 кДа. Полная аминокислотная последовательность установлена для более чем 150 цитохромов Р450 Молекулярная масса различных Р450 колеблется кДа. Мономеры гемопротеина состоят из одной полипептидной цепи, содержащей от 45 до 55% неполярных аминокислотных остатков. В отсутствие детергента они существует в виде агрегатов с молекулярной массой от 300 до 700 кДа. Полная аминокислотная последовательность установлена для более чем 150 цитохромов Р450 Единственный Р450, трехмерная структура которого была детально изучена с помощью рентгеновской кристаллографии - это Р450 из P. putida. Белок содержит 414 аминокислотных остатков, молек. масса - 47 кДа. Молекула этой монооксигеназы представляет собой асимметричную призму с основанием 3,0 нм и сторонами по 5,5 и 6,0 нм. Белок содержит 3 вида структур: 4 анти-параллельных спиральных участка, смесь спиралей и неупорядоченных структур, перемежающихся параллельными бета-структурами. Гем расположен между двумя параллельными спиралями; с пропионовыми группами гема взаимодействуют остатки Arg-112, Arg-229 и His-335, другие аминокислоты, окружающие гем, неполярны: гем не выходит на поверх- ность молекулы. Наименьшее расстояние от поверхности до гема составляет около 0,8 нм.


Индуцибельные и конститутивные цитохромы Р-450 Независимо от структуры и хромосомной локализации, цитохромы P450 подразделяют на конститутивные и индуцибельные. Конститутивные изоформы Р450 постоянно продуцируются клеткой, независимо от условий роста. Экспрессия индуцибельных ферментов может контролироваться химическими соединениями. Специфическая индукция отдельных форм Р450 – одно из важнейших свойств этих ферментов, приобретенных в процессе эволюции. Индукторы цитохромов могут уменьшить эффективность лекарств- субстратов. Существует и другая сторона этого явления. Внезапная отмена лекарства-индуктора (или прекращение воздействия индуктора из окружающей среды) может неожиданно привести к сильному повышению концентрации препарата в плазме крови, который ранее интенсивно метаболизировался. Примером может служить ситуация, когда курильщики, привыкшие к постоянному употреблению кофе, решают внезапно бросить курить, в результате чего снижается активность CYP 1А2, а в плазме крови повышается концентрация кофеина. Это может усугублять выраженность синдрома отмены: головную боль и возбуждение.


Метаболизм лекарственных средств Несмотря на разнообразие цитохромов в организме человека, метаболизм лекарственных средств происходит с участием ограниченного количества CYP 450. Наиболее распространенными представителями этой группы являются: CYP 1А2, CYP 2С9, CYP 2С19, CYP 2 D 6, CYP 2E1, CYP 3A4 (метаболизация более 90% известных лекарственных препаратов). Один цитохром может метаболизировать несколько лекарственных препаратов, имеющих различную химическую структуру; Один и тот же лекарственный препарат может подвергаться воздействию различных CYP 450 в разных органах и системах человеческого организма. Скорость ингибирования зависит от фармакокинетических свойств «конфликтующих» препаратов. Если и ингибитор, и лекарство-субстрат имеют короткий период полураспада (например, циметидин и ингибитор его метаболизма – теофиллин), взаимодействие окажется максимальным на 2–4-й день. Столько же времени потребуется для прекращения эффекта взаимодействия. В случае одновременного применения варфарина и амиодарона для прекращения ингибиторного эффекта потребуется 1 месяц и более, что связано с длительным периодом полураспада последнего.


Взаимодействие лекарственных препаратов Если два препарата метаболизируются с участием одного цитохрома, это приводит к снижению скорости метаболизации обоих препаратов и повышению их уровня в плазме (взаимодействие лекарственных препаратов). Отрадно, что существует не так много препаратов, обладающих характеристиками выраженного ингибитора. Характерными ингибиторами являются циметидин, эритромицин, кетоконазол и хинидин. Среди более новых препаратов потенциальными ингибиторными свойствами обладают селективные ингибиторы обратного транспорта серотонина и ингибиторы протеаз.


Взаимодействие ингибиторов протонного насоса и других лекарственных препаратов ИПП, диклофенак, фенитоин, варфарин,толбутамид, гликлазид, глибенкламид, глипизид, метформин, клопидогрель ИПП фелодипин, нифедипин, амлодипин, дилтиазем, лозартан, натеглинид, розеглитазон, статины (симвастатин и торвастатин) грейпфрутовый сок CYP 2C19 CYP 3А4


Генетическая вариабельность метаболизации лекарственных препаратов Для каждого человека характерен свой метаболизм лекарственных веществ, отличающийся от такового других людей. Индивидуальные особенности зависят от генетических факторов, возраста пациента, его пола, состояния здоровья, характера питания, сопутствующей фармакотерапии и т.д. Генетическая вариабельность лекарственного метаболизма была установлена случайно: стандартные дозы лекарств неожиданно вызывали нестандартные реакции у разных индивидуумов. Активность метаболизирующих ферментов бывает двух (иногда трех) основных видов: интенсивная и слабая (иногда и средняя), соответственно метаболизм лекарственных веществ может происходить быстро и медленно.


Влияние генетического полиморфизма на антисекреторный эффект лансопразола и рабопразола БМ = быстрые метаболизаторы ММ = медленные метаболизаторы * P




Эзомепразол (S-энантиомер омепразола) прогрессивно ингибирует CYP2C19 Andersson T et al. Gastroenterology. 2000;118:A ,0 4,0 6,0 8,0 10,0 12,0 День1День5День1День5День1День5 AUC R-Энантиомер (100% R) Омепразол (50% S; 50% R) Эзомепразол (100% S)


Моноклональные антитела в медицине Моноклональные антитела антитела, вырабатываемые иммунными клетками, принадлежащими к одному клеточному клону, то есть произошедшими из одной плазматической клетки-предшественницы. Они могут быть использованы для обнаружения соответствующего антигена или для его очистки. В последнее время их начали использовать для получения лекарственных препаратов. В случае их использования в качестве лекарства его название оканчивается на -mab (от английского «monoclonal antibody»). антитела клонуантитела клону


Моноклональные антитела Процесс получения моноклональных антител изобретён Жоржем Кёлером и Сезаром Мильштейном в 1970 годах, за что в 1984 году они получили Нобелевскую премию по физиологии. Идея состояла в том, чтобы взять линию миеломных клеток, которые не обладают способностью синтезировать свои собственные антитела, и слить такую клетку с нормальным B- лимфоцитом, синтезирующим антитела. После слияния получаются бессмертные клетки, производящие антитела, необходимо лишь отобрать гибридные клетки, синтезирующие нужное антитело. Идея была успешно реализована и уже к началу 1980-х годов началось коммерческое получение различных гибридом и очистка антител против заданных антигенов. Жоржем КёлеромСезаром Мильштейном Жоржем КёлеромСезаром Мильштейном Так как лимфоциты были мышиные и синтезировали мышиный иммуноглобулин, введение таких моноклональных антител человеку вызывает иммунную реакцию отторжения. В 1988 г Грег Винтер разработал специальную методику «очеловечивания» (гуманизации) моноклональных антител, что в основном снимает проблему иммунного ответа на введение антител больному с терапевтическими или диагностическими целями.


Антитела с адресной доставкой Моноклональные гуманизированные антитела против CD56, CD33, СD44 конъюгированные с метотрексатом, даунорубицином, доксорубицином, винкристином, винбластином, мелфаланом, митомицином C и хлорамбуцилом, используются при лечении рака груди и шейки матки, но они оказались неэффективными против в рака поджелудочной железы.


Терапевтические моноклонпльные антитела Даклизумаб - иммуносупрессорное гуманизированное моноклональное антитело (иммуноглобулин IgG1), производимое с использованием технологии рекомбинантной ДНК. Даклизумаб специфически связывается с высоким сродством с альфа-субъединицей (р55, CD25 или Tac-субъединица) человеческого рецептора для IL-2, который экспрессируется на поверхности активированных лимфоцитов


Моноклональные антитела Процесс получения моноклональных антител был изобретён Жоржем Кёлером и Сезаром Мильштейном в 1975 годах. За это изобретение в 1984 году они получили Нобелевскую премию по физиологии. Идея состояла в том, чтобы взять линию миеломных клеток, которые потеряли способность синтезировать свои собственные антитела и слить такую клетку с нормальным B-лимфоцитом, синтезирующим антитела, с тем, чтобы после слияния отобрать образованные гибридные клетки, синтезирующие нужное антитело. Эта идея была успешно реализована и уже к началу 1980-х годов началось коммерческое получение различных гибридом и очистка антител против заданных антигенов. Жоржем КёлеромСезаром Мильштейном19751984Нобелевскую премию по физиологииB-лимфоцитом гибридные клетки Жоржем КёлеромСезаром Мильштейном19751984Нобелевскую премию по физиологииB-лимфоцитом гибридные клетки Однако, так как лимфоциты были мышиные и синтезировали мышиный иммуноглобулин, введение таких моноклональных антител человеку вызывали иммунную реакцию отторжения. В 1988 Грег Винтер разработал специальную методику «очеловечивания» моноклональных антител, что в основном снимало проблему иммунного ответа на введение антител больному с терапевтическими или диагностическими целями. иммуноглобулин 1988иммуноглобулин 1988


Способы диагностики полигенных заболеваний: рак На основании изучения наблюдаемых иммунных ответов на человеческие опухоли было высказано предположение, что сывороточные аутоантитела ("aABs") могут быть полезными при диагностике рака Проводится детектирование aAB в биологических образцах и используются различия в иммунном статусе, определенном по характеристике аутоиммунных антител, для выявления различий в физиологических состояниях или фенотипах (определяемых как классы) для получения прогностической информации Для определения меры связывающих активностей в образцах от больных раком и нераковыми заболеваниями применяется набор синтетических пептидов, кроме того, идентифицированы и применяются наборы информативных эпитопов для характеристики иммунного статуса, ассоциированного с раком

АУТОИММУННЫЕ ЗАБОЛЕВАНИЯ И БОЛЕЗНИ ИММУННЫХ КОМПЛЕКСОВ

АУТОИММУННЫЕ ЗАБОЛЕВАНИЯ

Аутоиммунные заболевания достаточно широко распространены в человеческой популяции: ими страдает до 5% населения Земли. К примеру, ревматоидным артритом в США больны 6,5 млн человек, в Англии в крупных городах до 1% взрослых людей являются инвалидами с рассеянным склерозом, юношеский диабет поражает до 0,5% населения планеты. Печальные примеры можно продолжить.

Следует прежде всего отметить различие между аутоиммунными реакциями, или аутоиммунным синдромом и аутоиммунными заболеваниями, в основе которых лежит взаимодействие между компонентами иммунной системы и собственными здоровыми клетками и тканями. Первые развиваются в здоровом организме, протекают непрерывно и осуществляют устранение отмирающих, стареющих, больных клеток, а также возникают при какой-либо патологии, где они выступают не как ее причина, а как следствие. Аутоиммунные заболевания, которых насчитывают к настоящему времени около 80, характеризуются самоподдерживающимся иммунным ответом на собственные антигены организма, который повреждает клетки, содержащие аутоантигены. Нередко развитие аутоиммунного синдрома далее переходит в аутоиммунное заболевание.

Классификация аутоиммунных заболеваний

Аутоиммунные заболевания условно разделяют на три основных типа.

1. Органоспецифические болезни, которые вызываются аутоантителами и сенсибилизированными лимфоцитами против одного или группы аутоантигенов конкретного органа. Чаще всего это забарьерные антигены, к которым естественная (врожденная) толерантность отсутствует. К ним относятся тиреоидит Хосимото, миастения гравис, первичная микседема (тиреотоксикоз), пернициозная анемия, аутоиммунный атрофический гастрит, болезнь Аддисона, ранняя менопауза, мужское бесплодие, вульгарная пузырчатка, симпатическая офтальмия, аутоиммунный миокардит и увеит.

2. При неорганоспецифических заболеваниях аутоантитела к аутоантигенам ядер клеток, ферментов цитоплазмы, митохондрий и т.д. взаимодействуют с разными тканями данного или даже другого

вида организма. Аутоантигены в этом случае не изолированы (не являются «забарьерными») от контакта с лимфоидными клетками. Аутоиммунизация развивается на фоне ранее существовавшей толератнтности. К таким патологическим процессам относят системную красную волчанку, дискоидную эритематозную волчанку, ревматоидный артрит, дерматомиозит (склеродермия).

3. Смешанные болезни включают оба перечисленных механизма. Если роль аутоантител доказана, то они должны быть цитотоксическими против клеток поражаемых органов (или действовать непосредственно через комплекс АГ-АТ), которые, откладывась в организме, обусловливают его патологию. К этим заболеваниям относят первичный билиарный цирроз, синдром Шегрена, язвенный колит, глютеновую энтеропатию, синдром Гудпасчера, сахарный диабет 1 типа, аутоиммунную форму бронхиальной астмы.

Механизмы развития аутоиммунных реакций

Одним из основных механизмов, препятствующих развитию в организме аутоиммунной агрессии против собственных тканей, является формирование неотвечаемости к ним, называемой иммунологической толерантностью. Она не является врожденной, формируется в эмбриональном периоде и состоит в негативной селекции, т.е. элиминации аутореактивных клонов клеток, которые несут на своей поверхности аутоантигены. Именно нарушение такой толерантности и сопровождается развитием аутоиммунной агрессии и, как следствие, образованием аутоиммунитета. Как отмечал в своей теории Бернет, в эмбриональный период контакт таких аутореактивных клонов со «своим» антигеном вызывает не активацию, а гибель клеток.

Однако не все так просто.

Во-первых, важно сказать, что находящийся на Т-лимфоцитах антиген-распознающий репертуар сохраняет все клоны клеток, несущих все типы рецепторов для всех возможных антигенов, в том числе и аутоантигенов, на которых они комплексированы вместе с собственными молекулами HLA, что позволяет различить «свои» и «чужие» клетки. Это -этап «положительной селекции», за которым следует отрицательная селекция аутореактивных клонов. Они начинают взаимодействовать с дендритными клетками, несущими те же комплексы HLA молекул с аутоантигенами тимуса. Такое взаимодействие сопровождается передачей сигнала в аутореактивные тимоциты, и они подвергаются гибели по механизму апоптоза. Однако в тимусе представлены не все аутоантигены, поэтому некоторая часть

аутореактивных Т-клеток все же не устраняется и поступает из тимуса на периферию. Именно они и обеспечивают аутоиммунный «шум». Однако, как правило, эти клетки обладают сниженной функциональной активностью и не вызывают патологических реакций, как и аутореактивные В-лимфоциты, подвергающиеся отрицательной селекции и избежавшие элиминации, также не могут вызвать полноценный аутоиммунный ответ, поскольку не получают костимуляторный сигнал от Т-хелперов, и кроме того, могут подавляться специальными супрессорными вето -клетками.

Во-вторых, несмотря на отрицательную селекцию в тимусе часть аутореактивных клонов лимфоцитов все же выживает за счет не абсолютного совершенства системы элиминации и наличия клеток долговременной памяти, длительно циркулирует в организме и является причиной развития в последующем аутоиммунной агрессии.

После создания в 70-х годах прошлого столетия новой теории Ерне механизмы развития аутоиммунной агрессии еще более прояснились. Было предположено, что в организме постоянно работает система самоконтроля, включающая наличие на лимфоцитах рецепторов к антигенам и особых рецепторов к этим рецепторам. Такие АГ-распознающие рецепторы и антитела к антигенам (также фактически являющиеся их растворимыми рецепторами) назвали идиотипами, а соответствующие антирецепторы, или антиантитела-антиидиотипами.

В настоящее время равносвесие между идиотип-антиидиотип взаимодействиями рассматривается как важнейшая система самораспознавания, которая является ключевым процессом поддержания клеточного гомеостаза в организме. Естественно, нарушение такого равновесия и сопровождается развитием аутоиммунной патологии.

Такое нарушение может обусловливаться: (1) снижением супрессорной активности клеток, (2) появлением в кровотоке забарьерных («секвестрированных» антигенов глаза, гонад, головного мозга, черепно-мозговых нервов, с которыми иммунная система в норме не имеет контакта и при его возникновении реагирует на них как на чужеродные, (3) антигенной мимикрией за счет микробных антигенов, имеющих общие детерминанты с нормальными антигенами, (4) мутацией аутоантигенов, сопровождающейся модификацией их специфичности, (5) повышением количества аутоантигенов в циркуляции, (6) модификацией аутоантигенов химическими агентами, вирусами и др. с образованием биологически высокоактивных суперантигенов.

Ключевой клеткой иммунной системы в развитии аутоиммунных заболеваний является аутореактивный Т-лимфоцит, который реагирует на конкретный аутоантиген при органоспецифических заболеваниях и далее через иммунный каскад и вовлечение В-лимфоцитов вызывает образование органоспецифических аутоантител. В случае органонеспецифических заболеваний скорее всего аутореактивные Т-лимфоциты взаимодействуют не с эпитопом аутоантигена, а антигенной детерминантой антиидиотипических аутоантител к нему, что указано выше. Более того, аутореактивные В-лимфоциты, которые не могут активироваться в отсутствие костимулирующего фактора Т- клетки и синтезировать аутоантитела, сами обладают способностью презентировать мимикрирующий антиген без АГ-представляющей клетки и представлять его неаутореактивным Т-лимфоцитам, которые превращаются в Т-хелперы и активируют В-клетки на синтез аутоантител.

Среди аутоантител, образуемых В-лимфоцитами, особый интерес представляют естественные аутоантитела к аутологичным антигенам, которые в немалом проценте случаев выявляются и длительно сохраняются у здоровых людей. Как правило, это аутоантитела IgM класса, которые, по-видимому, все же следует считать предвесниками аутоиммунной патологии. По этой причине, чтобы разобраться в подробной ситуации и установить патогенную роль аутоантител, предложены следующие критерии диагностики аутоагрессии:

1. Прямое доказательство циркулирующих или связанных аутоАТ или сенсибилизированных Лф, направленных против аутоАГ, ассоциированного с данным заболеванием.

2. Идентификация причинного аутоАГ, против которого направлен иммунный ответ.

3. Адоптивный перенос аутоиммунного процесса сывороткой или сенсибилизированными Лф.

4. Возможность создания экспериментальной модели заболевания с морфологическими изменениями и синтезом АТ или сенсибилизированных Лф при моделировании заболевания.

Как бы то ни было, специфические аутоантитела служат маркерами аутоиммунных заболеваний и применяются при их диагностике.

Следует отметить, что наличия специфических аутоантител и сенсибилизированных клеток еще недостаточно для развития аутоиммунного заболевания. Большую роль при этом играют патогенные факторы внешней среды (радиация, силовые поля, загрязненные

продукты, микроорганизмы и вирусы и т.д.), генетическая предрасположенность организма, в том числе сцепленная с генами HLA (рассеянный склероз, диабет и др.), гормональный фон, применение различных медикаментов, нарушения иммунитета, в том числе цитокинного баланса.

В настоящее время можно предложить ряд гипотез механизма индукции аутоиммунных реакций (приводимая ниже информация частично заимствована у Р.В. Петрова).

1. Несмотря на систему самоконтроля в организме присутствуют аутореактивные Т- и В-лимфоциты, которые при определенных условиях взаимодействуют с антигенами нормальных тканей, разрушают их, способствуя выделению скрытых аутоантигенов, стимуляторов, митогенов, активирующих клетки, в том числе В-лимфоциты.

2. При травмах, инфекциях, дегенерациях, воспалении и проч. выделяются «секвестрированные» (забарьерные) аутоантигены, на которые вырабатываются аутоантитела, разрушающие органы и ткани.

3. Перекрестно-реагирующие «мимикрирующие» АГ микроорганизмов, общие с аутоантигенами нормальных тканей. Длительно находясь в организме, устраняют толерантность, активируют В-клетки на синтез агрессивных аутоантител: пример, -гемолитический стрептококк группы А и ревматическое поражение клапанов сердца и суставов.

4. «Суперантигены» - образуемые кокками и ретровирусами токсические белки, вызывающие сильнейшую активацию лимфоцитов. Например, нормальные АГ активируют лишь 1 на 10 000 Т-клеток, а суперантигены - 4 из 5! Присутствующие при этом в организме аутореактивные лимфоциты немедленно запустят аутоиммунные реакции.

5. Наличие у пациентов генетически программированной слабости иммунного ответа на конкретный АГиммунодефицит. Если его содержит микроорганизм, возникает хроническая инфекция, разрушающая ткани и высвобождающая различные аутоАГ, на которые развивается аутоиммунный ответ.

6. Врожденный дефицит Т-супрессоров, что отменяет контроль функции В-клеток и индуцирует их ответ на нормальные антигены со всеми последствиями.

7. Аутоантитела в определенных условиях «ослепляют» Лф, блокируя их рецепторы, распознающие «свое» и «чужое». В результате отменяется естественная толерантность и формируется аутоиммунный процесс.

Кроме перечисленных выше механизмов индукции ауотиммунных реакций, следует отметить также:

1. Индукцию экспрессии HLA-DR-антигенов на клетках, ранее их не имеющих.

2. Индукцию вирусами и другими агентами модификации активности аутоантигенов-онкогенов, регуляторов продукции цитокинов и их рецепторов.

3. Снижение апоптоза Т-хелперов, активирующих В-лимфоциты. Более того, в отсутствие пролиферативного стимула В-лимфоциты погибают от апоптоза, тогда как при аутоиммунных заболеваниях он подавляется и такие клетки, наоборот, накапливаются в организме.

4. Мутацию Fas-лиганда, которая приводит к тому, что его взаимодействие с Fas-рецептром не индуцирует апоптоз в аутореактивных Т-клетках, но подавляет связывание рецептора с растворимым Fas- лигандом и задерживает тем индуцированный им апоптоз клеток.

5. Дефицит особых Т-регуляторных CD4+CD25+ с экспрессией гена FoxP3 Т-лимфоцитов, которые блокируют пролиферацию аутореактивных Т-лимфоцитов, что ее существенно усиливает.

6. Нарушение участка связывания на хромосомах 2 и 17 особого регулирующего белка Runx-1 (РА,СКВ, псориаз).

7. Образование у плода аутоантител класса IgM ко многим компонентам аутоклеток, которые не элиминируются из организма, накапливаются с возрастом и у взрослых вызывают аутоиммунные заболевания.

8. Иммунные препараты, вакцины, иммуноглобулины могут вызвать аутоиммунные расстройства (допегит - гемолитическую анемию, апрессин - СКВ, сульфаниламиды - узелковый периартериит, пиразолон и его производные - агранулоцитоз).

Ряд препаратов может если не индуцировать, то усилить начавшуюся иммунопатологию.

Врачам очень важно знать, что следующие препараты обладают иммуностимулирующими потенциями: антибиотики (Эрик, амфотерицин В, леворин, нистатин), нитрофураны (фуразолидон), антисептики (хлорофиллипт), стимуляторы метаболизма (оротат К, рибоксин), психотропные препараты (ноотропил, пирацетам, фенамин, сиднокарб), плазмозамещающие растворы (гемодез, реополиглюкин, желатиноль).

Сопряженность аутоиммунных заболеваний с другими заболеваниями

Аутоиммунные расстройства (ревматические заболевания) могут сопровождаться опухолевым поражением лимфоидной ткани и неоп-

лазмами других локализаций, но и пациенты с лимфопролиферативными заболеваниями часто обнаруживают симптомы аутоиммунных состояний (табл.1).

Таблица 1. Ревматическая аутоиммунная патология при злокачественных новообразованиях

Так, при гипертрофической остеоартропатии выявляют рак легких, плевры, диафрагмы, реже желудочно-кишечного тракта, при вторичной подагре - лимфопролиферативные опухоли и метастазы, при пирофосфатной артропатии и моноартрите - метастазы в кости. Нередко полиартрит и волчаночноподобный и склероподобный синдромы сопровождаются злокачественными опухолями различной локализации, а ревматическая полимиалгия и криоглобулинемия - соответственно раком легких, бронхов и синдромом повышенной вязкости крови.

Часто и злокачественные новообразования проявляются ревматическими заболеваниями (табл.2).

При ревматоидном артрите повышен риск развития лимфогранулематоза, хронического миелолейкоза, миеломы. Опухоли чаще возникают при хроническом течении заболевания. Индукция неоплазм увеличивается по мере возрастания продолжительности заболевания, например, при синдроме Шегрена риск заболевания раком увеличивается в 40 раз.

В основе этих процессов лежат следующие механизмы: экспрессия антигена CD5 на В-клетках, синтезирующих органоспецифические антитела (в норме этот антиген представлен на Т-лимфоцитах); избыточная пролиферация больших гранулярных лимфоцитов, облада

Таблица 2. Злокачественные опухоли и ревматические заболевания

ющих активностью натуральных киллеров (фенотипически они относятся к СD8 + лимфоцитам); инфицирование ретровирусами HTLV-1 и вирусами Эпстайна-Барр; поликлональная активация В-клеток с выходом из-под регуляции этого процесса; гиперпродукция ИЛ-6; длительное лечение цитостатиками; нарушение активности естественных киллеров; дефицит CD4+ -лимфоцитов.

При первичных иммунодефицитах часто обнаруживают признаки аутоиммунных процессов. Высокая частота аутоиммунных нарушений выявлена при сцепленной с полом гипогаммаглобулинемии, недостаточности IgA, иммунодефицитах с гиперпродукцией IgA, при атаксии-телеангиэктазии, тимоме, при синдроме Вискотта-Олдрича.

С другой стороны, известен целый ряд аутоиммунных заболеваний, при которых были идентифицированы иммунодефициты (прежде всего связанные с функцией Т-клеток). У лиц с системными заболеваниями этот феномен выражен чаще (при СКВ в 50-90% случаев), чем при органоспецифических (при тиреоидите в 20-40% наблюдений).

Аутоантитела чаще возникают у лиц преклонного возраста. Это относится к определению ревматоидного и антиядерного факторов, а также антител, выявляемых в реакции Вассермана. У 70-летних людей без соответствующих клинических проявлений аутоантитела против различных тканей и клеток обнаруживаются по крайней мере в 60% случаев.

Общим в клинике аутоиммунных заболеваний является их длительность. Различают хроническое прогрессирующее или хронически рецидивирующее течение патологических процессов. Информация об особенностях клинического выражения отдельных аутоиммунных заболеваний изложена ниже (частично приводимая информация позаимствована у С.В. Сучкова).

Характеристика некоторых аутоиммунных заболеваний

Системная красная волчанка

Аутоиммунное заболевание с системным поражением соединительной ткани, с отложением коллагена и формированием васкулитов. Характеризуется полисимптомностью, как правило, развивается у лиц молодого возраста. В процесс вовлекаются практически все органы и многие суставы, фатальным оказывается поражение почек.

При этой патологии образуются антинуклеарные аутоантитела к ДНК, в том числе нативной, нуклеопротеинам, антигенам цитоплазмы и цитоскелета, микробным белкам. Считают, что аутоАТ к ДНК появляются в результате образования ее иммуногенной формы в комплексе с белком, либо IgM аутоантителом анти-ДНК специфичности, возникшим в эмбриональном периоде, или взаимодействия идиотипа-антиидиотипа и компонентов клеток при микробной или вирусной инфекции. Возможно, определенная роль принадлежит апоптозу клеток, вызывающему при СКВ под влиянием каспазы 3 расщепление нуклеопротеосомного комплекса ядра с образованием ряда продуктов, реагирующих с соответствующими аутоантителами. Действительно, в крови больных с СКВ резко повышено содержание нуклеосом. Причем аутоантитела к нативной ДНК являются наиболее диагностически значимыми.

Чрезвычайно интересным наблюдением является обнаружение у ДНК-связывающих аутоантител также и ферментативной способности гидролизовать молекулу ДНК без комплемента. Такое антитело назвали ДНК-абзимом. Нет сомнения, что эта фундаментальная закономерность, которая, как оказалось, реализуется не только при СКВ, играет громадное значение в патогенезе аутоиммунных заболеваний. При данной модели анти-ДНК аутоантитело обладает цитотоксической активностью по отношению к клетке, которая реализуется двумя механизмами: рецептор-опосредованным апоптозом и катализом ДНК-абзима.

Ревматоидный артрит

Образуются аутоантитела против экстрацеллюлярных компонентов, которые вызывают хроническое воспаление суставов. Аутоантитела относятся в основном к IgM классу, хотя встречаются и IgG, IgA и IgE, образуются против Fc-фрагментов иммуноглобулина G и называются ревматоидным фактором (РФ). Кроме них синтезируются аутоантитела к кератогиалиновым зернам (антиперинуклеарный фактор), кератину (антикератиновые АТ), коллагену. Существенно, что аутоантитела к коллагену неспецифичны, тогда как антиперинуклеарный фактор может оказаться предвестником формирования РА. Следует отметить также, что обнаружение IgM-РФ позволяет классифицировать серопозитивный или серонегативный РА, а IgA-РФ оказывается критерием высокоактивного процесса.

В синовиальной жидкости суставов обнаружены аутореактивные Т-лимфоциты, вызывающие воспаление, в которое вовлекаются макрофаги, усиливающие его выделяемыми провоспалительными цитокинами с последующим образованием гиперплазии синовиальной оболочки и повреждением хряща. Эти факты привели к возникновению гипотезы, допускающей инициацию аутоиммунного процесса Т-хелперами 1-го типа, активируемыми неизвестным эпитопом с костимуляторной молекулой, которые разрушают сустав.

Аутоиммунный тиреоидит Хосимото

Заболевание щитовидной железы, сопровождающееся ее функциональной неполноценностью с асептическим воспалением паренхимы, которая нередко инфильтрирована лимфоцитами и в последующем замещается соединительной тканью, образующей в железе уплотнения. Это заболевание проявляется тремя формами - тиреоидитом Хосимото, первичной микседемой и тиреотоксикозом, или болезнью Грейвса. Две первые формы характеризуются гипотиреозом, аутоантигеном в первом случае является тиреоглобулин, а при микседеме - белки клеточной поверхности и цитоплазмы. В общем ключевое влияние на функцию щитовидной железы оказывают аутоантитела к тиреоглобулину, рецептору тиреоид-стимулирующего гормона и тиреопероксидазе, они же используются в диагностике патологии. Аутоантитела подавляют синтез гормонов щитовидной железой, что отражается на ее функции. Вместе с тем В-лимфоциты могут связываться с аутоантигенами (эпитопами), влиять тем самым на пролиферацию Т-хелперов обоих типов, что сопровождается развитием аутоиммунного заболевания.

Аутоиммунный миокардит

При этом заболевании ключевая роль принадлежит вирусной инфекции, которая скорее всего является его пусковым механизмом. Именно при нем наиболее четко прослеживается роль мимикрирующих антигенов.

У пациентов с данной патологией обнаруживаются аутоантитела к кардиомиозину, рецепторам наружной мембраны миоцитов и, что самое главное, к белкам вирусов Коксаки и цитомегаловирусам. Существенно, что при этих инфекциях в крови выявляется очень высокая виремия, вирусные антигены в процессированной форме скапливаются на профессиональных антиген-представляющих клетках, которые могут активировать непримированные клоны аутореактивных Т-лимфоцитов. Последние начинают взаимодействовать с непрофессиональными антиген-представляющими клетками, т.к. не нуждаются в костимулирующем сигнале, и взаимодействуют с клетками миокарда, на которых в силу активации антигенами резко повышается экспессия адгезионных молекул (ICAM-1, VCAM-1, Е-селектин). Процесс взаимодействия аутореактивных Т-лимфоцитов также резко усиливается и облегчается за счет повышения на кардиомиоцитах экспрессии молекул HLA II класса. Т.е. аутоантигены миокардиоцитов распознаются Т-хелперами. Очень типично ведет себя развитие аутоиммунного процесса и вирусной инфекции: вначале мощная виремия и высокие титры антивирусных аутоантител, далее - снижение виремии вплоть до вирусонегативности и противовирусных антител, нарастание антимиокардиальных аутоантител с развитием аутоиммунного заболевания сердца. В экспериментах был четко продемонстрован аутоиммунный механизм процесса, при котором перенос Т-лимфоцитов от инфицированных мышей с миокардитом индуцировал у здоровых животных заболевание. С другой стороны, подавление Т- клеток сопровождалось резким положительным терапевтическим эффектом.

Миастения гравис

При этом заболевании ключевую роль играют аутоантитела к ацетилхолиновым рецепторам, которые блокируют их взаимодействие с ацетилхолином, полностью подавляя функцию рецепторов или резко усиливая ее. Следствием таких процессов является нарушение трансляции нервного импульса вплоть до резкой мышечной слабости и даже остановки дыхания.

Существенная роль в патологии принадлежит Т-лимфоцитам и нарушению в идиотипической сети, происходит также резкая гипертрофия тимуса с развитием тимомы.

Аутоиммунный увеит

Как и в случае миастении гравис, немалую роль в развитии аутоиммунного увеита, при котором развивается аутоиммунное хроническое воспаление увеаретинального тракта, играет инфицирование простейшими Toxoplasma gondii и вирусами цитомегалии и простого герпеса. При этом ключевая роль принадлежит мимикрирующим антигенам возбудителей, которые имеют общие детерминанты с тканями глаза. При данном заболевании появляются аутоантитела к аутоантигенам ткани глаза и микробным белкам. Эта патология является истинно аутоиммунной, поскольку введение пяти очищенных антигенов глаза экспериментальным животным вызывает развитие у них классического аутоиммунного увеита за счет образования соответствующих аутоантител и поражения ими увеальной оболочки.

Инсулинзависимый сахарный диабет

Широко распространенное аутоиммунное заболевание, при котором иммунная аутоагрессия направлена против аутоантигенов клеток островков Лангерганса они разрушаются, что сопровождается подавлением синтеза инсулина и следующими за ним глубочайшими метаболическими изменениями в организме. Это заболевание опосредовано в основном функционированием цитотоксических Т-лимфоцитов, которые сенсибилизированы, по-видимому, к внутриклеточной декарбоксилазе глутаминовой кислоты и белку р40. При этой патологии выявляют и аутоантитела к инсулину, но их патогенетическая роль пока не ясна.

Некоторые исследователи предлагают рассматривать аутоиммунные реакции при диабете с трех позиций: (1) диабет - типичное аутоиммунное заболевание с аутоагрессией против аутоантигенов бетаклеток; (2) при диабете образование антиинсулиновых аутоантител носит вторичный характер, формирующий синдром аутоиммунной инсулинорезистентности; (3) при диабете развиваются другие иммунопатологические процессы, как например, появление аутоантител к тканям глаза, почек и т.д. и их соответствующие поражения.

Болезнь Крона

Иначе гранулематозный колит - тяжелое рецидивирующее аутоиммунное воспалительное заболевание в основном толстой кишки

с сегментарным поражением всей стенки кишки лимфоцитарными гранулемами с последующим образованием проникающих щелевидных язв. Заболевание встречается с частотой 1:4000, чаще страдают молодые женщины. Оно ассоциировано с антигеном HLA-B27 и обусловлено образованием аутоантител к тканям слизистой оболочки кишечника при снижении количества и функциональной активности супрессорных Т-лимфоцитов и к мимикрирующим микробным антигенам. В толстой кишке обнаружено повышенное количество IgG- содержащих лимфоцитов, специфичных к туберкулезу. В последние годы появились обнадеживающие сообщения об успешном лечении этого заболевания с помощью антител к β-ФНО, которые подавляют активность аутореактивных Т-лимфоцитов.

Рассеянный склероз

При этой патологии также ключевую роль играют аутореактивные Т-клетки с участием Т-хелперов 1 типа, которые обусловливают разрушение миелиновой оболочки нервов с последующим развитием тяжелейшей симптоматики. Мишеневым аутоантигеном скорее всего является основной белок миелина, на который формируются сенсибилизированные Т-клетки. Немалая роль в патологии принадлежит апоптозу, проявления которого могут обусловить различные типы течения процесса - прогрессирующий или ремитирующий. В экспериментальной модели (экспериментальный энцефаломиелит) воспроизводится при иммунизации животных основным миелиновым белком. Не исключают определенную роль в этиологии рассеянного склероза вирусной инфекции.

Аутоиммунные заболевания — это болезни организма из-за слишком высокой активности своей же иммунной системы. Свои собственные системы и клетки принимаются за чужеродные, и им наносится вред. Функциональный разлад иммунной системы в организме человека провоцирует ряд тяжелых заболеваний. Когда защитный механизм организма срабатывает анормально, стимулируя в больших количествах антитела, действие которых направлено на ликвидацию собственных тканей, развивается аутоиммунное заболевание в определенном органе или системе. Локализация патогенеза будет сосредотачиваться в избранном иммунной системой отделе организма, структурные единицы тканей которого воспринимаются как чужеродные тела.

Процесс иммунного генеза

Каждый знает, что иммунитет – «щит» и «меч» от множества болезнетворных микроорганизмов. Именно эти два оружия создают препятствие для проникновения инфекций во внутреннюю среду биологической системы, а, если и случилось их вторжение, защитные антитела помогают быстро истребить губительные антигены. За процесс иммуногенеза сначала отвечает костный мозг, в котором происходит продуцирование лейкоцитов. Дальше белые кровяные тела распределяются в два главных отдела, где будет проходить их окончательное созревание: тимус (вилочковая железа) и лимфатические узлы. Так, образуются два вида иммунных клеток – Т- и В-лимфоциты.

В комплексном сочетании эти два вида клеток при вторжении в организм молекулярных структур чужеродных тел производят необходимые к ним антитела. Активизируясь, антитела лимфоцитов уничтожают антигены, при этом главные клетки иммунной системы вырабатывают иммунитет к патогенному агенту, запоминая опасного для организма врага. Именно на этом принципе (запоминания) строится устойчивость организма к определенным вирусам или бактериям, с которыми уже произошло в прошлом «знакомство» иммунитета. Например, перенесенная однажды такая болезнь, как ветрянка, больше не побеспокоит человека, так как к ней организм более невосприимчив. Или же введение антигена в небольших дозах внутрь организма путем вакцинации, с помощью чего иммунная система образует антитела к данной разновидности вируса, и производится тот же эффект.

Но, к сожалению, не ко всем болезнетворным микроорганизмам может выработаться иммунитет. Для примера возьмем респираторные недуги, от которых мы страдаем очень часто, а организм, как реагировал на простудную инфекцию, так и продолжает испытывать чувствительность к ней. Почему же иммунные клетки до сих пор не зафиксировали в «памяти» респираторного антигена? Ответ прост, вирусы, инфекции, бактерии и прочие патогенные микроорганизмы способны мутировать – видоизменять структуру и молекулярный состав генетического материала. И что самое страшное, иммуноглобулины, которые призваны защищать организм от болезней, нередко и сами меняют свои свойства прямого предназначения и начинают функционировать против «законов» здравого смысла. Подобная дезориентация уже способствует активной «чистке» организма от здоровых клеток, входящих в состав тканей определенного органа.

Причины развития аутоиммунного заболевания

Аутоиммунные нарушения причиняют губительное воздействие на избранные органы, вследствие чего происходит их патологическое разрушение. Странно, но факт, болезни возникают из-за агрессии собственного иммунитета. Почему организм «программирует» защитный механизм заниматься ликвидацией собственноличных элементов – тканей, формирующих внутренние органы? Присутствует ли возможность восстановления «поломанной» иммунной системы? Эти вопросы волнуют уже десятки лет отечественных и зарубежных специалистов по иммунологии. Современные ученые до сих пор в поисках настоящих причин появления аутоиммунной реакции и в процессе открытия заветного лекарства от патологического нарушения в защитном механизме.

Если основываться на последние исследовательские данные, то иммунологический разлад наступает в связи со следующими причинами:

  • наследственными мутациями генов, что характеризуется преобразованием кодируемого геном белка и формированием определенного вида наследственного заболевания;
  • соматическими изменениями клеток, которые провоцируются экзогенными факторами, например, проникновением в организм вредных веществ из атмосферной среды – радиации, ультрафиолета, токсинов и пр.;
  • продолжительными тяжелыми инфекционными недугами, из-за чего функции иммунитета предельно нарушаются, а иммуноглобулины лишаются правильной ориентации;
  • заражением вирусами, умеющими химически подстраиваться под структурные единицы здоровых тканей, вследствие чего происходит активизация антител против чужеродных и собственных клеток одновременно.

Аутоиммунные заболевания и их симптомы

Аутоиммунные патологии – это болезни, обусловленные неправильной работой иммунной системы с активацией мощного производства антител, агрессивно настроенных против клеток собственных органов. В настоящее время в медицинских источниках описывается большое количество подобных заболеваний с различной локализацией, а также с абсолютно разными характеристиками тяжести течения болезней и описаниями симптоматики. Поэтому единого списка проявлений, свойственных всем аутоиммунным нарушениям просто нет. Так, у каждой патологии существуют свои клинические признаки. Рассмотрим наиболее распространенные заболевания аутоиммунного вида вместе с главными симптомами.

  • Ревматоидный артрит (болезнь Стилла) . Очаг концентрируется в хрящевых тканях мелких суставов преимущественно верхних конечностей. Симптоматика: наличие слабости в мышцах, ощущение онемения в больной области, появление отека в синовиальных сумках, болезненный синдром и скованность в движении в месте воспаления, повышение температуры.
  • Инсулинозависимый сахарный диабет . Неизлечимое заболевание, обусловленное отказом работы поджелудочной железы, продуцирующей инсулин. Признаки развития болезни: сильная слабость, неукротимая жажда, сильное повышение аппетита, частые позывы к мочеиспусканию, резкая утрата массы тела.
  • Рассеянный склероз . Для болезни характерно разрушение отдельных участков спинного и головного мозга, где сосредоточены нервные пучки, покрытые миелиновой оболочкой. Миелин замещается на рубцовую ткань, вследствие чего утрачивается импульсная взаимосвязь между главными нервными структурами. Симптомы при патологии: упадок сил, поражение глаз (понижение остроты зрения), потеря чувствительности на любом участке тела, появление миалгий и невралгий, заторможенность интеллектуальная, раскоординация движения, потеря памяти.
  • Болезнь Шенлейна-Геноха . Опасная патология, которая поражает сосуды кровеносной системы, участвующих в кровоснабжении важных отделов организма – кожных покровов, почек, кишечника, легких, костной ткани и пр. Так, происходит тяжелое поражение сосудистых образований с появлением внутренних геморрагий. Для данного заболевания характерны сильная усталость, головные боли, отеки мягких тканей, появление на коже и слизистых оболочках мелких и обширных кровоизлияний, гиперпигментация, наличие болевого синдрома в воспаленном органе.
  • Системная красная волчанка . Аутоиммунное заболевание, обусловленное расстройством защитного механизма в организме человека. Так как иммунные клетки имеются в абсолютно каждом отделе, их агрессивное действие может быть сконцентрировано в любом органе. Симптоматика следующая: мышечные боли, поднятие температуры, снижение работоспособности, кожные высыпания одновременно на носу, щеках и переносице, изъязвление ротовой полости и слизистой носа, при тяжелых формах образуются трофические язвы на кожных покровах рук и ног.
  • Акантолитическая пузырчатка . По причине возникновения аутоиммунных агрессивных процессов серьезные поражения терпят кожные покровы и слизистые оболочки дермы, которые расслаиваются и покрываются пузырями с серозным экссудатом. В месте поражения пузырями появляются сильно болезненные эрозивные очаги. Патогенез в основном локализируется во рту и на зеве, в пупочном отверстии, паху, под молочными железами, подмышками, между ягодицами, в наружных половых органах.
  • Аутоиммунный тиреоидит . При данной патологии аутоиммунными антителами выводится из строя щитовидная железа, что приводит к недостаточной выработке ее гормонов. Проявляется заболевание повышенной утомляемостью, обезвоживанием и огрубением кожи, похолодением ладоней и стоп, зябкостью и сильной чувствительностью к холоду, невротическими расстройствами, повышением веса, проблемами с памятью, потерей волос и пр.
  • Анемия гемолитического вида . Патогенез на аутоиммунном уровне характеризуется атакой лейкоцитов против эритроцитов. Потеря красных кровяных телец приводит к таким недомоганиям, как появление сильной усталости, вялости, головокружений обмороков, побледнение кожи и ее пожелтение, возникновение тахикардии. При этом заболевании меняется естественный окрас урины – моча становится темно-насыщенного цвета, наблюдается увеличение селезенки.
  • Диффузный токсический зоб . И снова аутоиммунный механизм направлен на поражение функций щитовидной железы. Так, на больном органе образуются узелковые образования, при этом дисфункция щитовидки заключается в чрезмерном синтезе гормонов. Симптоматика полностью противоположная тиреоидитам: появляется непереносимость жары, возникают перебои в сердечном ритме, а также наблюдаются потеря массы тела, тремор конечностей, повышенная нервная нестабильность, приливы жара.

Диагностирование аутоиммунной патологии

При появлении аутоиммунных нарушений организм сигнализирует о патологическом состоянии клиническими симптомами. Человек может понять, что появление непонятных недомоганий и развитие патогенеза в определенном органе связаны именно с аномальными отклонениями в работе иммунной системы, по специальному анализу крови на присутствие агрессивных антител, направленных на уничтожение здоровых клеток организма.

Основной метод диагностики, применяемый в данных целях, называется ИФА – иммуноферментный анализ. Он включает несколько видов лабораторных исследований, например, выявление антител к кардиолипинам, к ДНК, клеткам щитовидной железы, бета-гликопротеину и пр. Специалистом назначается определенный вид анализа на основании анамнеза больного пациента.

Далее, имея на руках заключение аутоиммунной диагностики, которое подтверждает повышенный уровень «киллерных» иммуноглобулинов, человек оформляется под наблюдение профильного врача, специализирующегося в лечении установленного заболевания, им может быть один из специалистов по таким направлениям, как:

  • гастроэнтерология;
  • ревматология;
  • дерматология;
  • нефрология;
  • кардиология;
  • эндокринология;
  • урология;
  • пульмонология;
  • гематология;
  • неврология.

Соответствующий доктор разрабатывают схему терапии аутоиммунного заболевания с назначением средств, тормозящих выработку антител, гормональных препаратов или иммуномодулирующих медикаментов. Какой именно тип лекарственного средства будет уместен в применении, зависит от индивидуального случая – особенностей возникшего диссонанса в иммунной системе.

Аутоиммунные заболевания продолжают оставаться одной из самых сложных проблем клинической иммунологии. Вот уже почти сто лет одной из главных догм иммунологии, сформулированной Паулем Эрлихом, является представление о том, что в норме иммунная система не должна развивать иммунный ответ против собственных тканей, поскольку это может привести к гибели организма. П. Эрлих назвал это “ужасом самоотравления” (“horror autotoxicus”). В настоящее время этот феномен известен под названием “иммунная толерантность”, которая развивается в эмбриональном и раннем постнатальном периоде и заключается в том, что в организме создаются условия, при которых иммунная система не реагирует с аутоантигенами (self-антигенами) (об этом уже упоминалось в соответствующей главе).

Таким образом, аутоиммунитет характеризуется потерей (нарушением, исчезновением) толерантности, или естественной неотвечаемости по отношению к собственным антигенам. Как следствие, продуцирующиеся аутоантитела и/или цитотоксические клетки приводят к развитию заболевания.

Однако способность иммунной системы распознавать аутоантиген не всегда несет патологический потенциал. Так, например, распознавание собственных молекул главного комплекса гистосовместимости при реализации иммунного ответа, антиидиотипический ответ против self-идиотипов и др.; все это позволяет иммунной системе выполнить свою основную функцию иммунного надзора.

В настоящее время описано очень большое количество аутоиммунных заболеваний. Предполагается, что иммунная система при соответствующих условиях может развить иммунный ответ против любого аутоантигена.

Аутоиммунные заболевания делят на две группы:

  • органоспецифические – например тяжелая миастения, тиреоидит Хашимото, болезнь Грейвса (тиреотоксикоз с диффузным зобом) и др.;
  • системные (неорганоспецифические) – например системная красная волчанка, ревматоидный артрит и др.

Аутоиммунные заболевания (неполный перечень, призванный показать встречаемость этой патологии практически во всех медицинских специальностях)

  • Системная красная волчанка
  • Ревматоидный артрит
  • Склеродермия
  • Дерматополимиозит
  • Смешанные болезни соединительной ткани
  • Синдром Шегрена (сухой синдром)
  • Псориаз
  • Витилиго
  • Дерматит герпетиформный
  • Пузырчатка обычная
  • Буллезный пемфигоид
  • Болезнь (синдром Рейтера)
  • Болезнь Бехтерева
  • Рассеянный множественный склероз
  • Острый (пост-)инфекционный полиневрит (синдром Гийена – Барре)
  • Тяжелая миастения
  • Тиреоидит Хашимото (аутоиммунный)
  • Болезнь Грейвса (тиреотоксикоз с диффузным зобом)
  • Сахарный диабет инсулинозависимый (I типа)
  • Аутоиммунное поражение надпочечников (болезнь Аддисона)
  • Аутоиммунная полиэндокринопатия
  • Саркоидоз
  • Идиопатический легочный фиброз
  • Неспецифический язвенный колит
  • Болезнь Крона (региональный энтерит)
  • Аутоиммунный гастрит, тип А
  • Первичный биллиарный цирроз
  • Хронический активный гепатит
  • Аутоиммунная энтеропатия
  • Целиакия (глютенчувствительная энтеропатия)
  • Гломерулонефрит
  • Синдром Гудпасчера
  • Аутоиммунный орхит
  • Аутоиммунное бесплодие
  • Первичный синдром антифосфолипидных антител
  • Аутоиммунный увеит
  • Симпатическая офтальмия
  • Аутоиммунный конъюнктивит
  • Узловатый полиартериит
  • Гигантоклеточный гранулематозный артериит (ревматическая полимиалгия)
  • Пернициозная анемия
  • Аутоиммунная гемолитическая анемия
  • Аутоиммунная тромбоцитопения
  • Аутоиммунная нейтропения и др.

Хотя большинство из ~80 идентифицированных аутоиммунных заболеваний относятся к редким, тем не менее в мире страдают миллионы людей. Например, в США поражены 5% популяции – приблизительно 14 млн человек. В Украине по теоретическим расчетам поражены приблизительно 2,3 млн человек.

В одних случаях развитие аутоиммунитета (срыв толерантности) может быть первичным и служить причиной развития заболевания, в других, особенно при длительных хронических заболеваниях (например хронический пиелонефрит, хронический простатит и др.), – вторичным и являться следствием заболевания, замыкая “порочный круг” патогенеза.

Нередко у одного и того же больного развивается несколько аутоиммунных заболеваний, особенно это относится к аутоиммунным эндокринопатиям.

Аутоиммунные заболевания часто ассоциируются с лимфоидной гиперплазией, злокачественной пролиферацией лимфоидных и плазматических клеток, иммунодефицитными состояниями – гипогаммаглобулинемией, селективным дефицитом IgA, недостаточностью компонентов комплемента и др. Системные аутоиммунные заболевания часто развиваются в зрелом возрасте.

В настоящее время предложено около двух десятков теорий, объясняющих причины срыва толерантности и, как следствие, развития аутоиммунитета. Приведем основные из них.

1.Теория “запретных” клонов. Известно, что при индукции толерантности на определенных этапах развития (созревания) иммунной системы происходит элиминация (разрушение) тех Т- и В-лимфоцитов, которые обладают аутореактивностью – способностью реагировать с ауто (self) – антигенами. Согласно теории “запретных” клонов, по тем или иным причинам в тимусе и костном мозге не происходит полная элиминация аутореактивных Т- и В-лимфоцитов, что в будущем, при стечении определенных обстоятельств, может привести к срыву толерантности.

2.Теория секвестрированных (забарьерных) антигенов. Известно, что определенные ткани ограждены гистогематическими барьерами (половые железы, ткани глаза, мозга, щитовидной железы и др.). В связи с этим при созревании иммунной системы антигены таких тканей не контактируют с лимфоцитами и не происходит элиминации соответствующих клонов клеток. При нарушении гистогематического барьера и попадании антигенов в кровоток собственные иммунокомпетентные клетки распознают их как чужеродные и запускают весь механизм иммунного ответа.

3.Теория расстройства иммунологической регуляции(Поддержание толерантности на периферии).

  • Снижение функции Т-лимфоцитов-супрессоров. Считается, что Т-лимфоциты-супрессоры подавляют способность В-лимфоцитов продуцировать антитела против собственных тканей, поддерживая таким образом состояние толерантности. При снижении количества или функции Т-супрессоров потенциально аутореактивные В-клетки начинают реагировать на собственные тканевые антигены, а появляющиеся аутоантитела приводят к развитию аутоиммунного заболевания.
  • Нарушение функции Т-лимфоцитов-хелперов. В частности, при ее повышении могут создаваться условия, благоприятные для инициации ответа со стороны аутореактивных В-лимфоцитов на собственные антигены, даже при нормальной функции Т-супрессоров. Таким образом, потенциальные возможности развития аутоиммунитета, имеющиеся в организме, реализуются за счет нормально функционирующих иммунологических регуля-торных механизмов, включающих, прежде всего. Т-лимфоциты – супрессоры и хелперы.
  • В последние годы все большую популярность приобретает гипотеза, согласно которой в основе аутоиммунной патологии лежат расстройства иммунной регуляции, обусловленные нарушением продукции соответствующих цитокинов Т-лимфоцитами-хелперами I и II типов, а также Т-регуляторными клетками.
  • Игнорирование – объясняется отсутствием (или недостаточностью) презентации антигена, либо отсутствием Т-клеток с рецептором для соответствующего антигенного пептида, находящегося в бороздке молекулы ГКГ. Эти так называемые «дыры» в репертуаре Т-клеток, которые объясняются тем, что в раннем периоде созревания толерантности соответствующие клоны ауто-реактивных Т-клеток подверглись в тимусе клональной делеции.
  • Анергия – объясняется отсутствием ко-стимуляционных сигналов. В этом случае Т-клетка своим антиген-распознающим сигналом распознает антиген в бороздке молекулы ГКГ, но поскольку отсутствует дополнительный ко-стимуляционный сигнал, такая Т-клетка подвергается апоптозу.
  • Регуляци я – объясн яется су ществованием специа льных рег ул яторных Т-клеток (T-reg), которые способны за счет цитокинов TGF и ИЛ-10 подавлять функцию Т-хелперов 1 и Т-хелперов 2 типов. Кроме того, на поверхности T-reg имеется молекула CTLA4, которая, связываясь с молекулой СД80/86 на поверхности АПК, препятствует связыванию последней с молекулой СД28 на поверхности Т-лимфоцита, блокируя таким образом ко-стимуляционный сигнал. В свою очередь, молекула CTLA4 через молекулу СД80/86 передает обратный сигнал в антиген-презентирующую клетку, повышая в ней экспрессию фермента индоламин-2,3-диоксигеназу, которая уменьшает количество триптофана в Т-лимфоците, подавляя таким образом его активность.

4.Теория нарушения идиотип-антиидиотипических взаимодействий.

Современные модели иммунного ответа предполагают, что иммунная система обладает саморегулировкой и может реагировать на свои собственные продукты с последующей супрессией или стимуляцией этой реакции. Известно, что в сыворотке крови больных и здоровых лиц можно обнаружить антитела против собственных Ig (первым антителом такого типа, обнаруженным у человека, был ревматоидный фактор). Идиотипическая детерминанта (идиотип) тесно связана с индивидуальной структурой активного центра молекулы Ig. Вначале считалось, что продукция аутоантител против собственных Ig – результат нарушения процесса распознавания “своего”, и это является либо причиной, либо симптомом заболевания. Однако впоследствии многие исследователи обнаружили антииммуноглобулины в сыворотке крови здоровых лип, исходя из чего предположили, что продукция антииммуноглобулинов представляет собой физиологический, а не патологический процесс. На этой основе была разработана модель иммунной системы, в которой контрольно-регуляторные влияния зависят от множества взаимодействующих компонентов, а антииммуноглобулины, направленные против активного центра молекулы специфического антитела (антиидиотипические антитела) играют ведущую роль. Было сделано предположение (N. К. Erne, 1974), что распознавание идиотипических детерминант и развитие антиидиотипического иммунного ответа представляет собой центральный механизм контроля и регуляции биосинтеза антител. Эта теория получила название сетевой теории регуляции иммунного ответа.

В теории Ерне можно выделить два основных положения:

  • Иммуноглобулины, а также иммуноглобулиновые рецепторы на поверхности антиген-реактивных Т- и В-лимфоцитов имеют детерминанты, обладающие (ауто-) антигенными свойствами, и получившие название “идиотип” (идиотипические детерминанты);
  • В организме предсуществуют лимфоциты, способные в норме распознать своими рецепторами идиотипические детерминанты и реализовать антиидиотипический ответ. Анти-идиотипическое антитело также может быть распознано и на него вырабатываются анти-антиидиотипические антитела до тех пор, пока иммунный ответ не угаснет. Полагают, что идиотип и анти-антиидиотип являются идентичными структурами.

Исследования последних лет подтверждают важную роль идиотип-антиидиотипических взаимодействий в регуляции иммунного ответа. Необходимо выделить следующие основные положения:

  • Антиидиотипический ответ развивается одновременно с обычным иммунным ответом на чужеродные антитела;
  • идиотип -антиидиотипические взаимодействия обусловливают возможность как стимуляции, так и супрессии лимфоцитов под влиянием антиидиотипических антител. С учетом этих данных, становится ясно, что развивающийся одновременно с обычным иммунным ответом антиидиотипический ответ, стимулируя или угнетая первый в зависимости от тех или иных обстоятельств, обеспечивает его саморегуляцию по типу обратной связи.

Таким образом, при осуществлении иммунного ответа развиваются антитела, иммунные комплексы и/или клеточно-опосредованный иммунный ответ. Для того, чтобы сбалансировать эти медиаторы иммунопатологии и не дать им “работать” против собственных тканей, одновременно включается регуляторный механизм, представляющий собой сложную сеть Т-, В-клеток и антител, координированный как антиидиотипический иммунный ответ. Этот механизм обеспечивает контроль, необходимый для предотвращения повреждения органов-мишеней во время бесчисленных иммунных реакций, генерируемых “хозяином” в пределах собственного организма.

Из сказанного ясно, что нарушение идиотип-антиидиотипических взаимодействий будет способствовать развитию аутоиммунных заболеваний.

5.Теория поликлональной активации В-лимфоцитов. Обнаружено, что многие вещества химической или биологической природы обладают способностью индуцировать активацию В-лимфоцитов, которая приводит к их пролиферации и продукции антител. Как правило, такие антитела относятся к иммуноглобулинам класса М. В том случае, если поликлональной активации подверглись аутореактивные В-лимфоциты, продуцирующие аутоантитела, возможно развитие аутоиммунного заболевания.

Поликлональные активаторы В-лимфоцитов липополисахарид Очищенный белок туберкулина Протеин A Staphylococcus aureus Белок, ассоциированный с липидом А Т-клеточные и макрофагальные лимфокины Fc-фрагмент Ig

Протеолитические ферменты (например, трипсин) Полианионы (например, декстрана сульфат) Антибиотики, (например, нистатин, амфотерицин В) Микоплазма

6.Теория развития аутоиммунитета под влиянием суперантигенов.

Бактериальные суперантигены получили свое название в связи со способностью активировать большое количество Т- и В-лимфоцитов независимо от антигенной специфичности этих клеток. Выше упоминалось, что при классическом варианте антигенного распознавания Т-хелпер активируется под влиянием взаимодействия Т-клеточного антигенраспознающего рецептора (ТАГРР) и пептида, который презентируется антигенпредставляющей клеткой (АПК) в ассоциации с молекулой главного комплекса гистосовместимости класса II. При этом только один (или несколько) Т-лимфоцитов-хелперов могут быть активированы. Активация Т-лимфоцитов-хелперов под влиянием суперантигенов происходит совсем по-другому. В этом случае суперантиген не поглощается антигенпредставляющей клеткой и не подвергается обычному перевариванию (процессингу) с образованием пептида. При этом суперантиген как бы обходит этот необходимый для специфического распознавания этап и неспецифически связывается с вариабельной частью бета-цепи Т-клеточного распознающего рецептора вне его антигенспецифической зоны (сайта). Происходит своеобразное перекрестное связывание молекул главного комплекса гистосовместимости антигенпрезентирующей клетки с Т-клеточным распознающим рецептором. В случае такого механизма активации Т-лимфоцитов-хелперов возможна одновременная активация большого их количества.

Таким образом, отличительные особенности стимуляции Т-лимфоцитов под влиянием суперантигенов заключаются в следующем:

  1. Для этого нет необходимости в переваривании (процессинге) антигена в антигенпред-ставляющей клетке;
  2. Такая стимуляция не зависит от антигенной специфичности молекул комплекса HLA и Т-клеточного распознающего рецептора;
  3. Суперантиген способен стимулировать в 103-104 раз больше лимфоцитов, чем процесси-рованный антиген;
  4. Аллогенный (чужеродный) суперантиген может стимулировать как хелперы (CD4+), так и киллеры (CD8+) Т-лимфоциты;
  5. Аутологичный (self) суперантиген может стимулировать только Т-лимфоциты-хелперы (CD4);
  6. Для полноценной стимуляции Т-лимфоцитов чужеродным суперантигеном необходим дополнительный, костимуляционный, сигнал.

Чужеродные суперантигены описаны для Staphylococcus aureus (энтеротоксины А, В, С и др., токсин, вызывающий синдром токсического шока, эксфолиативные токсины). Streptococcus pyogenes (эритрогенный токсин, токсины А, В, С, D); для Mycoplasma arthritidis. Под влиянием этих суперантигенов могут развиваться следующие заболевания (состояния): пищевая токсикоинфекция, синдром токсического шока, синдром чешуйчатой кожи, ревматическая лихорадка, артрит и др.

Установлено также, что некоторые опухолевые вирусы, находящиеся в геноме клетки в форме провируса, могут кодировать продукцию белка, который вызывает стимуляцию Т-лимфоцитов, выступая в качестве суперантигена.

Рассматриваются три возможных механизма участия суперантигенов в развитии аутоиммунных нарушений.

A. Активация аутореактивных Т-лимфоцитов. Доказано, что суперантигены могут непосредственно активировать аутореактивные Т-лимфоциты, которые затем мигрируют в соответ ствующие ткани и вызывают аутоиммунные нарушения, продуцируя цитокины и/или реализуя свою киллинговую функцию.

Б. Активация аутореактивных В-лимфоцитов. Осуществляется за счет того, что суперантиген связывает молекулы комплекса HLA класса II, имеющиеся на В-лимфоцитах, с молекулой Т-клеточного антигенраспознающего рецептора. В этом случае активация Т-лимфоцитов происходит без специфического распознавания антигена, а неспецифически под влиянием суперантигена. Тем не менее, такой Т-лимфоцит продуцирует соответствующие цитокины, которые способствуют тому, что активированный аутореактивный В-лимфоцит начинает продуцировать аутоантитела. Последние образуют иммунные комплексы и, оседая в тканях, вызывают их повреждение. Не исключается, что В-лимфоциты могут активироваться и через собственный ан-тигенраспознающий иммуноглобулиновый рецептор.

B. Активация антигенпредставляющих клеток. Суперантигены могут активировать антигенпредставляющие клетки, например макрофаги. Это приводит к высвобождению из них цитокинов, супероксидных анионов и других медиаторов воспаления. Активация макрофагов может также привести к нарушению переваривания (процессинга) антигенов с последующей презентацией аутоантигенов аутореактивным Т-лимфоцитам.

7.Теория генетической предрасположенности. Согласно современным данным, существует генетически детерминированная предрасположенность к развитию аутоиммунных заболеваний. Эта предрасположенность контролируется по меньшей мере шестью генами, расположенными на разных хромосомах. Часть из них расположена в главном комплексе гистосовместимости (HLA) человека, роль которого в реализации иммунного ответа является первостепенной.

Установлено, что большинство аутоиммунных заболеваний ассоциируются с наличием в HLA-фенотипе человека следующих антигенов: DR2, DR3, DR4 и DR5. Например, ревматоидный артрит ассоциируется с HLA-DR4, тиреоидит Хашимото – с HLA-DR5, рассеянный множественный склероз – с HLA-DR2, системная красная волчанка -с HLA-DR3.

Доказано также, что аутоиммунные заболевания развиваются намного чаще у женщин, чем у мужчин. Например, частота встречаемости системной красной волчанки у женщин в 6-9 раз выше, чем у мужчин. Считается, что в данном случае важную роль играют половые гормоны.

В рамках теории генетической предрасположенности выдвинуто несколько гипотез, объясняющих участие продуктов HLA-комплекса в патогенезе заболеваний вообще и аутоиммунных в частности.

A. Согласно рецепторной гипотезе, одной из наиболее ранних, определенные HLA-антигены являются рецепторами для вирусов, облегчающими их фиксацию и проникновение вклетку. Эта гипотеза имеет много аргументов как в свою пользу, так и против. Например, при таком заболевании явно вирусной этиологии, как полиомиелит, а также при инфекционном мононуклеозе достоверной корреляции с HLA-антигенами не обнаруживается.

Б. Гипотеза о модификации (изменении) аутологичного, своего, антигена (altered self). Согласно этой гипотезе, модифицированный аутологичный антиген распознается иммунной системой как чужеродный (nonself), что приводит к срыву толерантности.

B. Гипотеза о влиянии гипотетического Ir-гена на предрасположенность к заболеваниям (нарушение селекции антигенных детерминант, наличие “дыр” в репертуаре Т-лимфоцитов,нарушение супрессии, опосредованной Т-лимфоцитами).

Г. Гипотеза о влиянии неклассических генов, картирующихся в пределах системы HLA. Например гены HSP-70, TNF, недостаточность С4А, С2 ассоциируются с системной красной волчанкой и пиогенной инфекцией.

8.Теория молекулярной мимикрии. Термин “мимикрия” в свое время был предложен для объяснения подобия, идентичности антигенных детерминант некоторых микроорганизмов антигенным детерминантам хозяина, в связи с чем их распознавание иммунной системой не происходит, что и обусловливает развитие инфекционного заболевания. В настоящее время теория молекулярной мимикрии видоизменилась и представлена двумя вариантами.

А. Согласно первому варианту теории, некоторые микроорганизмы действительно обладают перекрестной реактивностью с антигенными детерминантами хозяина возможно не за счет идентичности, а за счет достаточно выраженного подобия (гомологии). Это обстоятельство имеет свое объяснение. Действительно, главнейшая (и, видимо, первоначальная) роль иммунной системы состоит в том, чтобы защитить организм от инфекций. Для этой цели основные клетки иммунной системы – Т- и В-лимфоциты – снабжены антигенраспознающими рецепторами самой разной специфичности, что позволяет им распознать любой, внедрившийся в организм инфекционный агент.

Распознав чужеродный агент, иммунная система защищается двумя основными механизмами: 1) продукцией гуморальных антител; 2) генерацией цитотоксических Т-лимфоцитов. При первом механизме зашиты антитела поражают внеклеточные инфекционные агенты и их токсины, образуя иммунные комплексы; при втором механизме – для спасения всего организма ци-тотоксическим Т-лимфоцитам приходится разрушать собственные клетки, в которых прячутся внутриклеточные возбудители.

Таким образом, иммунитет к инфекционным агентам довольно часто имеет иммунологический компонент либо в виде иммунных комплексов, либо в виде цитотоксических Т-лимфоцитов. Отсюда следует, что, развивая противоинфекционный ответ, иммунная система должна “выбирать” силу, с которой она защищается: ответ должен быть достаточным для элиминации возбудителя, но безвредным для организма. Этот баланс зависит от многих условий: а) степени выраженности и продолжительности инфекции; б) повреждающего действия патогена и степени иммунного ответа; в) количества и значимости тех клеток хозяина, которые были разрушены при попытке элиминации внутриклеточного возбудителя.

Микроорганизмы экспрессируют множество антигенов, которые подобны, если не идентичны, антигенам хозяина. Если бы все Т- и В-лимфоциты, способные реагировать с этими антигенами, были элиминированы в период создания толерантности, то в защитных способностях иммунной системы были бы большие пробелы, что позволило бы этим микроорганизмам беспрепятственно внедряться в организм. Однако это не так, следовательно, те Т- и В-лимфоциты, которые распознают инфекционные агенты, обладающие антигенами, подобными антигенам хозяина (перекрестно реагирующие антигены), могут реагировать с собственными клетками, т. е. обладают аутореактивностью.

Таким образом, при создании толерантности в эмбриональном и раннем постнатальном периоде полного разрушения аутореактивных Т- и В-лимфоцитов не наступает. Сохранив ауто-реактивные Т- и В-лимфоциты, организм увеличивает возможности иммунной системы противостоять инфекционным агентам, обладающим подобными антигенными структурами. И как следствие, развитие протективного антиинфекционного иммунного ответа при определенных условиях может приводить к развитию аутоиммунного ответа.

Однако следует учитывать, что далеко не всегда аутоиммунный ответ (особенно в виде продукции гуморальных аутоантител после инфекционных заболеваний) заканчивается развитием аутоиммунного заболевания.

Б. Согласно второму варианту теории молекулярной мимикрии, собственные (ауто-, self-) антигены хозяина могут модифицироваться под влиянием различных факторов: длительного воздействия инфекционных агентов, влияния свободных радикалов. N0, ксенобиотиков, лекарственных средств, воздействия факторов окружающей среды (ионизирующее и ультрафиолетовое излучение, воздействие низких температур и т. п.). В результате таких воздействий аутоантигены изменяются и распознаются иммунной системой как чужеродные (non-self). Продуцирующиеся аутоантитела и цитотоксические лимфоциты связываются не только с модифицированными аутоантигенами, но и с истинными аутоантигенами за счет все той же перекрестной реактивности (мимикрии, подобия).

В иммунологических механизмах повреждения тканей при аутоиммунных заболеваниях принимают участие все те эффекторные механизмы, которыми иммунная система защищает организм от экзогенной интервенции -гуморальные антитела, иммунные комплексы, цитотоксические Т-лимфоциты и цитокины. В развитии патологического процесса указанные факторы могут действовать как порознь, так и совместно.

При прямом действии аутоантител на клетки и ткани организма, как правило, активируется система комплемента, которая способствует их разрушению. Возможен вариант “включения” механизма антителозависимого клеточно-опосредованного лизиса, т.е. с участием К-клеток. В некоторых случаях аутоантитела, направленные против функционально значимых клеточных рецепторов, стимулируют или ингибируют специализированную функцию клеток без ее разрушения.

В том случае, когда формируются циркулирующие иммунные комплексы, состоящие из ауто-антигена и аутоантител, разные причины могут вызвать их оседание в микроциркуляторном русле различных органов (почка, суставы, кожа и др.) или в местах гемодинамически напряженных, с выраженным турбулентным течением (бифуркации, отхождение крупных сосудов и т. п.). В местах отложения иммунных комплексов активируется комплемент, скапливаются гранулоциты и моноциты, выделяющие различные ферменты. Все это приводит к гибели клеток “шокового” органа и развитие воспаления.

Созревание цитотоксических Т-лимфоцитов приводит к их накоплению в пораженной ткани (околососудистая инфильтрация) с последующим развитием киллингового эффекта, привлечением большого количества клеток воспаления.

Как правило, в развитие аутоиммунных заболеваний, вовлечены иммунные механизмы, соотвествую-щие I, III и IV типам иммунных реакций по классификации Джела и Кумбса.

Ауто (self) антигены (пептиды) образуются антигенпрезентирующими клетками во время процес-синга поглощенных клеточных фрагментов (например, апоптические тельа) и могут презентировать-ся молекулами HLA класса I или класса II. Презентация внутриклеточных аутопептидов молекулами HLA I класса способствует созреванию аутоцитотоксических Т-лимфоцитов; в свою очередь, презентация внеклеточных аутопептидов молекулами HLA II класса способствует созреванию аутоантител.

В последние годы в развитии аутоиммунного повреждения клеток и тканей большое внимание уделяют провоспалительным цитокинам- ИЛ-1, альфа-ОНФ, гамма-ИНФ, ИЛ-2, а также включению механизмов апоптоза. Сегодня имеются доказательства того, что аутоиммунные повреждения тканей могут быть реализованы за счет механизма неспецифического связывания Fas + FasL и включения апоптоза. Обусловлено это тем, что на поверхности клеток, например, В-клеток поджелудочной железы и олигодендроцитах, под воздействием различных стимулов (прежде всего, цитокинов) появляется Fas-рецептор. Аутореактивные Т-лимфоциты, экспрессирующие FasL, могут связываться с Fas-рецептором и индуцировать апоптотическую смерть клеток-мишеней.

Интересны также следующие наблюдения. Считают, что конститутивная (изначальная) экспрессия FasL на поверхности клеток привилегированных органов (например, глаз, яичек) носит защитный характер, позволяя индуцировать апоптоз у Fas-положительных лимфоцитов при их попадании в соответствующие ткани. Но наличие на поверхности одной и той же клетки Fas-рецептора и Fas-лиганда может быть причиной аутокринного суицида такой клетки. Подобный механизм рассматривается как одна из причин развития тиреоидита Хашимото (на тироцитах есть FasL, а при определенных воздействиях на мембране тироцитов начинают сильно экспресси-роваться Fas-рецепторы).

Наличие аутоантител само по себе еще не указывает на развитие заболевания. В невысоких титрах аутоантитела постоянно обнаруживаются в сыворотке крови здоровых лиц и участвуют в поддержании гомеостаза, обеспечивают выведение продуктов метаболизма, идиотипический контроль и другие физиологические процессы.

Исходя из приведенных данных, можно дать определение понятий “аутоиммунный процесс” и “аутоиммунное заболевание”.

Аутоиммунный процесс (аутоиммунитет) – это форма иммунного ответа, индуцированная аутоантигенными детерминантами в условиях нормы и патологии; является одним из механизмов поддержания гомеостаза. Выраженность аутоиммунных процессов в условиях нормы незначительная.

Аутоиммунное заболевание – это патологический процесс, в патогенезе которого важную роль играют аутоантитела и/или клеточный аутоиммунный ответ.

Признаки, по которым то или иное заболевание может быть отнесено к разряду аутоиммунных, сформулированы еще Л. Витебски (1961).

  1. Наличие аутоантител или цитотоксических Т-лимфоцитов, направленных против антигена, ассоциированного с данным заболеванием.
  2. Идентификация аутоантигена, против которого направлен иммунный ответ.
  3. Перенос аутоиммунного процесса с помощью сыворотки, содержащей антитела или цито-токсические Т-лимфоциты.
  4. Возможность создания с помощью введения аутоантигена экспериментальной модели заболевания с развитием соответствующих морфологических нарушений, характерных для заболевания.

Общие принципы иммуно-лабораторной диагностики аутоиммунных заболеваний основываются на следующих признаках:

  • Наличие специфических аутоантител;
  • Наличие специфической клеточной сенсибилизации (выявляется с помощью реакции бласттрансформации – РБТ и теста ингибиции миграции лейкоцитов в присутствии соответствующего аутоантигена);
  • Повышение уровня гамма-глобулина и/или IgG;
  • Изменение количества Т-хелперов, Т-супрессоров и Т-регуляторных клеток, приводящее к срыву толерантности;
  • Снижение уровня СЗ и С4 компонентов комплемента;
  • Отложения иммунных комплексов в пораженных тканях (IgG, IgM, СЗ, С4 и фибрин);
  • Лимфоидно-клеточная инфильтрация пораженных тканей;
  • Определение HLA-фенотипа.


Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.