3 способность выдерживать длительные перегрузки. Перегрузки, их действие на человека в разных условиях

Космонавт, одетый в тяжелый и неудобный скафандр, на минутку остановился у люка, ведущего внутрь космического корабля, оглянулся на стоящую внизу толпу провожающих, поднял руку в прощальном приветствии и исчез в темном отверстии своего отсека. Он удобно уселся в кресле из пористого, мягкого, пластического материала, закрепил ремни, подсоединил контакты скафандра к общей сети сигнальной проводки корабля и нажал одну из кнопок на щите управления, давая сигнал готовности к радиоприему. Через минуту он услышал голос командующего полетом:

Все в порядке, осталось еще несколько минут! - Космонавт включил общую сеть радиовещания и услышал голос радиокомментатора, который сообщал подробности подготовки к старту и красочно описывал предпусковые эмоции и настроения. Космонавт еще раз вспомнил сцены прощания с родными и друзьями, с учеными-руководителями космических исследований.

Объявляю готовность номер один! - внезапно раздался в гермошлемофоне голос командующего. После этого начался столь знакомый всем космонавтам волнующий отсчет, каждая цифра которого несла с собой все увеличивающуюся напряженность ожидания.

Внимание, внимание, внимание! Десять… девять… восемь… семь… шесть… пять… четыре… три… два… один… Пуск!

Кабину космонавта пронзила сначала вибрация, приходящая волнами откуда-то снизу; потом раздался приглушенный гром, который быстро превратился в протяжный непрерывный грохот. Из-под дна ракеты показалась длинная струя огненных молний, и ее огромный корпус, среди дыма и грохота, медленно отделился от земли, постепенно увеличивая скорость движения.

В то время как все провожающие на космодроме, стараясь проследить за полетом корабля, все выше поднимали головы, в кабине начались ответственные для космонавта минуты.

Перегрузка нарастает! - доносил он по радио. - Все в порядке, приборы действуют исправно! - Это были последние слова, которые космонавту удалось произнести без особого труда, потому что вдруг какая-то мощная сила прижала его тело к креслу. Огромная тяжесть навалилась на грудь так, что космонавт не мог сделать ни одного глотка воздуха. Казалось, еще немного, и он будет раздавлен. Ноги и руки отяжелели, стали будто свинцовыми, мускулы лица искривились и подались назад, глаза, словно два шарика, глубоко втиснулись в черепную коробку.

Космонавт пытался еще сказать что-то в микрофон, но - безуспешно. С его губ срывалось только непонятное бормотание. Отказавшись от попыток разговора, космонавт сосредоточился на своих переживаниях, старался оказать сопротивление мощной силе, глотнуть устами воздух.

Внезапно он почувствовал резкое облегчение.

Конец работы двигателя первой ступени ракеты, - пронеслось в его голове.

Но это был только мгновенный перерыв в работе двигателей. Как только отделилась первая ступень ракеты, включились двигатели второй ступени.



Скорость снова стала нарастать, а с ней увеличилась нагрузка, тело космонавта снова вдавилось в подушки кресла. Через несколько минут иссякло горючее в двигателях второй ступени ракеты, наступил короткий перерыв, после чего заработали двигатели третьей ступени. И хотя тело еще с огромным трудом преодолевало нагрузку, в голове космонавта появилась мысль о скором конце испытания. Он знал, что двигатели третьей ступени должны работать очень короткое время, и через несколько минут - конец перегрузкам!

Так и случилось. Через девяносто секунд двигатели прекратили работу, и наступила внезапная тишина.

Переход был настолько резким и быстрым, что ни тело, ни мысль космонавта не успели к нему подготовиться. Сердце колотилось в груди, грудная клетка быстро вздымалась и опускалась, космонавт хватал воздух открытым ртом и часто, неглубоко дышал. Но вдруг все прошло.

* * *

Уфф! - глубоко и с чувством облегчения вздохнул космонавт. Первая часть полета - закончена. Он включил микрофон и, четко выделяя слоги, сказал:

Вышел на орбиту. Все оборудование и приборы работают бесперебойно. Самочувствие хорошее.

Мы попытались описать обыкновенный, рядовой старт космонавта в космос, когда задача ограничивается только лишь орбитальным полетом вокруг Земли. Такой старт все же представляет для человеческого организма тяжелое испытание из-за действия силы ускорения.

Что же это за сила?

Как ее измерить?

Представим себе на минуту, что мы поднялись вверх на воздушном шаре, и, выбрав удобный момент, выбросили гирю. В момент выброса скорость гири будет равна нулю, но уже в конце первой секунды полета она составит 9,8 метров в секунду, в конце второй секунды - в два раза больше, то есть 19,6 м/сек, в конце третьей секунды - в три раза больше, то есть 29,4 м/сек и так далее. Скорость полета гири увеличивается с каждой секундой на 9,8 м/сек.

Именно эта величина и есть единицей ускорения. В науке ее принято обозначать латинской буквой «g». Если какое-либо физическое тело поднимается или падает вертикально, сила ускорения зависит от тяжести или, что то же самое, от силы земного притяжения. Однако существуют и другие виды ускорения, например при вращении, когда появляется центробежная сила, или в самолете, когда пилот, выходя из пикирующего полета, переходит к так называемой «горке».

Все эти виды ускорения считаются положительными.

Во время резкого торможения быстро несущегося поезда или автомобиля возникает сила ускорения с обратным знаком - отрицательное ускорение. В этом случае, сила инерции, вызванная торможением, то есть потерей скорости, или если угодно - отрицательным ускорением, бросает пассажира вперед. Во время автомобильных аварий люди чаще всего гибнут от действия отрицательного ускорения.

Было время, когда вопросы ускорения рассматривались только теоретически. После появления самолетов с большой скоростью полета, вопросы ускорения стали изучаться практически. Лет тридцать тому назад, в кругах авиаторов наделал много шума случай, когда пилот при выходе из пикирующего полета потерял управление и разбился. Оказалось, что под воздействием силы ускорения, возникшей при резкой перемене направления движения во время большой скорости полета, пилот потерял сознание и выпустил из рук рычаги управления.

Какова же причина потери сознания? Ведь это был опытный, сильный, отличавшийся железным здоровьем пилот!

В момент выхода из пикирующего полета появилась центробежная сила, которая вызвала отрицательное ускорение порядка двух до трех. По мере роста центробежной силы увеличивался вес тела пилота и его крови. Когда ускорение дошло до величины 4 g, значительная часть крови, под влиянием этой силы, отхлынула от мозга и переместилась в более низкие части тела, вследствие чего пилот стал терять зрение. Несколько мгновений позднее, когда ускорение уменьшилось, пилот ничего не видел, будто с черной повязкой на глазах.

Однако ускорение продолжало нарастать, потому что пилот вел самолет по кривой, в конце которой самолет оказался бы в положении вертикального полета вверх. Все больше крови притекало из мозга к сердцу пилота. Появились грозные симптомы. Пилоту казалось, что сердце резко падает вниз, что оно переместилось в нижнюю часть живота, а печень оказалась еще ниже, где-то около колен. Пилот уже совсем ничего не видел, и ему приходилось напрягать все силы, чтобы не потерять сознания. До сих пор ему еще не приходилось переживать такого состояния, но пилот не хотел отказаться от борьбы, не хотел подчиниться слабости своего собственного организма. Он полагал, что все неприятные ощущения минуют, как только прекратится действие центробежной силы.

Но на этот раз он просчитался. Он не принял во внимание большой начальной скорости в момент выхода из пикирующего полета и, тем самым, значительной величины центробежной силы, которая появилась в это время.

Неудачный полет продолжался. Мозг пилота, лишенный крови, прекратил работу. Когда сила ускорения дошла до 10 g, тело пилота весило уже не 85 кг, как обычно, а 850 кг. Каждый кубический сантиметр крови весил не 1 грамм, а 10, таким образом кровь стала тяжелее железа и весила почти столько же, сколько весит ртуть.

Делая последнее усилие, пилот решился выдержать еще одну секунду, перед тем как взять рычаг управления «от себя», чтобы облегчить чудовищное давление центробежной силы. Однако в то же мгновение он потерял сознание. Перетянул струну, не выдержал и… проиграл.

Самолет потерял управление, сильная и тяжелая машина стала беспорядочно падать и, в конце концов, врезалась в землю. Таков был трагический конец этого полета.

Случай этот длительное время обсуждался в кругах авиаторов, в особенности же среди физиологов, занимающихся проблемами авиационной медицины. Начались всесторонние научные исследования.

Установлено, что при ускорении порядка 5 g, даже хорошо натренированные и стойкие пилоты теряют зрение, способность дышать, в ушах у них появляются сильные боли. Если такое состояние длится не более 30–40 секунд, организм быстро его преодолевает, если же продолжается дольше - могут произойти серьезные расстройства и даже травмы.

После того, как в авиации началась эра реактивных полетов, и скорости самолетов стали превышать 1000 км/час, ученые стали получать много сведений о стойкости организма на перегрузки при наблюдениях за поведением пилотов во время выполнения фигур высшего пилотажа на больших скоростях. Строились на земле и катапульты, с помощью которых выбрасывались в воздух с большой начальной скоростью манекены, снабженные многочисленными исследовательскими приборами. Отмечались и явления, происходящие в организме парашютиста в момент перехода от свободного падения к полету с открытым парашютом.

Но такие исследования были неполными. Необходимо было создать более многосторонние, удобные и точные приборы и установки для изучения явлений, происходящих в организме человека под воздействием перегрузок.

«КАРУСЕЛЬ»

Скоро такая установка была построена. Это центрифуга, которую летчики и космонавты некоторых стран окрестили названием «карусель». Она стала основной установкой по исследованию стойкости организма к перегрузкам. Как же выглядит эта «карусель»?

В обширном круглом зале, на высоте около метра над уровнем пола, виднеется решетчатая консоль из стальных труб, несколько напоминающая строительный кран. С одного конца консоль посажена на вертикальную ось с электроприводом, мощностью 6000 л. с. Длина консоли карусели составляет 17 метров; на другом конце решетки установлена кабина с местом для сидения человека; в кабине сосредоточена разнообразная и сложная исследовательская аппаратура.

Кабина закрывается герметически, что дает возможность устанавливать внутри нее температуру и давление в весьма широких пределах, то есть можно в ней создать условия, весьма близкие к тем, которые могут господствовать в кабине космонавта во время полета в космосе.

Специальный механизм подвески кабины автоматически устанавливает ее во время испытаний в такое положение, чтобы центробежная сила действовала на человека, находящегося внутри кабины по прямой линии, подобно тому, как эта сила действует во время космического полета. Это облегчает расчеты наблюдающим за опытом врачам.

Из всех многочисленных аппаратов, находящихся в кабине, стоит обратить внимание на объектив камеры телевидения, находящийся непосредственно над головой пассажира кабины. Как только пилот займет в кабине свое место, ученые прикрепляют к его телу множество датчиков, соединенных с электронной контрольной аппаратурой. Благодаря этому, все явления, происходящие в организме пилота во время центрифугирования, точно фиксируются на лентах самопишущих приборов.

Как только консоль «карусели» начнет вращаться, в кабине возникает центробежная сила, которая воздействует на тело пилота подобно силе ускорения в кабине космического корабля или самолета. По мере роста количества оборотов эта сила тоже растет и может достичь величины 40 g, при которой вес тела пилота увеличивается до 3200 кг. Такая перегрузка для человека может окончиться смертью, поэтому ее создают только в исключительных случаях при опытах с животными.

Следует, однако, отметить, что на американской авиационной базе в Джонсвилле (центрифугу, установленную там, как раз мы описываем), в свое время получил известность рекорд, установленный одним из пилотов. Несмотря на то, что ускорение превысило опасный предел 5 g, пилот не давал сигнала к прекращению опыта, и на переданное по телефону предложение остановить центрифугу, ответил отказом. Более того, он потребовал увеличения оборотов. Пилот выдержал ускорение 8 g, потом 10 и 12 g. И только тогда, когда сила ускорения дошла до 14 g и держалась на этом уровне две минуты, пилот наконец дал понять, что больше уже выдержать не может.

Способность человеческого организма переносить перегрузки не одинакова у разных лиц и в значительной степени зависит от индивидуальных качеств, степени натренированности, состояния здоровья, возраста человека и прочее. В основном, нормальный человек при перегрузках 5 g, чувствует себя плохо, но натренированные, пользующиеся исключительным здоровьем пилоты могут выдержать перегрузку порядка 10 g в течение 3–5 минут.

Какие же перегрузки приходилось переносить до сих пор космонавтам?

По советским данным, первый в мире человек, совершивший полет в космическое пространство, Юрий Гагарин, во время старта выдержал перегрузку порядка 4 g. Американские исследователи сообщают, что космонавт Гленн выдержал возрастающую перегрузку до 6,7 g с момента старта до момента отделения первой ступени ракеты, то есть на протяжении 2 минут и 10 секунд. После отделения первой ступени ускорение возрастало с 1,4 до 7,7 g в течение 2 минут и 52 секунд.

Так как в этих условиях ускорение, а с ним и перегрузки нарастают постепенно и не длятся долго, сильный натренированный организм космонавтов переносит их без всякого вреда.

РЕАКТИВНЫЕ САНИ

Есть еще один тип установки для исследования реакции человеческого организма на перегрузки. Это реактивные сани, представляющие собой кабину, движущуюся по рельсовому пути значительной протяженности (до 30 километров). Скорость кабины на салазках доходит до 3500 км/час. На этом стенде удобнее исследовать реакции организма на перегрузки, так как на них можно создавать не только положительные, но и отрицательные ускорения. После того, как мощный реактивный двигатель сообщит салазкам через несколько секунд после старта скорость порядка 900 м/сек (то есть скорость ружейной пули), ускорение может достигнуть величины 100 g. При резком торможении, также при помощи реактивных двигателей, отрицательное ускорение может дойти даже до 150 g.

Испытания на реактивных санях пригодны в основном для авиации, а не космонавтики, и, кроме того, установка эта обходится значительно дороже центрифуги.

КАТАПУЛЬТЫ

По тому же принципу, что и реактивные сани, действуют катапульты, имеющие наклонные направляющие, по которым движется кресло с пилотом. Катапульты пригодны в особенности в авиации. На них испытывают реакции организма пилотов, которым быть может в будущем придется при аварии самолета катапультироваться, чтобы спасти свою жизнь. В этом случае, кабина вместе с пилотом выстреливается с потерпевшего аварию реактивного самолета и с помощью парашюта спускаемся на землю. Катапульты способны сообщить ускорение не больше 15 g.

«ЖЕЛЕЗНАЯ СИРЕНА»

В поисках способа предотвратить вредное воздействие перегрузок на организм человека, ученые установили, что большую пользу приносит погружение человека в жидкую среду, плотность которой примерно соответствует средней плотности человеческого тела.

Были построены бассейны, наполненные жидкой суспензией, соответствующей плотности, с устройством для дыхания; в бассейны помещали подопытных животных (мышей и крыс), после чего осуществляли центрифугирование. Оказалось, что стойкость мышей и крыс к перегрузкам возросла в десять раз.

В одном из американских научных институтов были построены бассейны, позволяющее поместить в них человека; (летчики впоследствии прозвали эти бассейны «железными сиренами»). Пилота сажали в ванну, заполненную жидкостью соответствующей плотности, и производили центрифугирование. Результаты превзошли все ожидания - в одном случае перегрузки были доведены до 32 g. Такую перегрузку человек выдержал в течение пяти секунд.

Правда, «железная сирена» с технической точки зрения несовершенна и, в частности, имеются возражения с точки зрения удобств для космонавта. Однако, не следует судить чересчур поспешно. Возможно, в недалеком будущем, ученые найдут способ улучшить условия испытаний на такой установке.

Следует добавить, что стойкость к перегрузкам во многом зависит от положения тела космонавта во время полета. На основе многих испытаний ученые установили, что человек легче переносит перегрузки в полулежачем положении, так как такое положение удобнее для циркуляции крови.

КАК ДОБИТЬСЯ УВЕЛИЧЕНИЯ СТОЙКОСТИ

Мы уже упоминали, что в проведенных космических полетах перегрузки были сравнительно небольшими и продолжались всего несколько минут. Но ведь это только начало космической эры, когда полеты людей в космос происходят по орбитам, сравнительно близким к Земле.

Теперь же мы стоим на пороге полетов на Луну, а при жизни ближайшего поколения - на Марс и Венеру. Возможно придется тогда испытывать значительно большие ускорения, и космонавты будут подвергаться значительно большим перегрузкам.

Существует еще проблема стойкости космонавтов к небольшим, но длительным, постоянным перегрузкам, длящимся в течение всего межпланетного путешествия. Предварительные данные говорят за то, что постоянное ускорение порядка долей, «g» переносится человеком без всякого труда. Уже разработаны проекты таких ракет, двигатели которых будут работать с постоянным ускорением. Не смотря на то что во время самого опыта людям приходилось переносить различные неприятные явления, опыты им не принесли никакого вреда.

Возможно, что в будущем удастся повысить стойкость человеческого организма к перегрузкам другим путем. Интересные опыты были поставлены учеными Кембриджского университета в США. Они подвергли постоянному ускорению порядка 2 g беременных мышей до тех пор, пока не появились мышата, которых держали на центрифуге в течение всей их дальнейшей жизни до самой смерти. Мыши, родившиеся в таких условиях, прекрасно себя чувствовали под воздействием постоянной перегрузки 2 g, и их поведение ничем не отличалось от поведения их собратий, живущих в нормальных условиях.

Мы далеки от мысли поставить аналогичные опыты с людьми, но все же считаем, что явление такой приспособляемости организма к перегрузкам может решить ряд задач, стоящих перед биологами.

Не исключено также, что ученые найдут способ нейтрализации сил ускорения, и человек, оснащенный соответствующей аппаратурой, легко перенесет все явления, сопутствующие перегрузкам. Еще большие надежды связаны с методом замораживания, когда чувствительность человека резко падает (об этом мы пишем ниже).

Прогресс в области повышения стойкости человеческого организма к перегрузкам весьма велик и продолжает развиваться. Уже удалось добиться большого успеха в повышении стойкости путем придания корпусу человека правильного положения во время полета, использования мягкого, устланного губчатой пластмассой кресла и скафандров специальной конструкции. Возможно ближайшее время принесет еще больший успех в этой области.

КОГДА ВСЕ ВОКРУГ ВИБРИРУЕТ

Из многих опасностей, подстерегающих космонавта во время полета, следует указать еще одну, связанную с аэродинамическими особенностями полета и работой реактивных двигателей. Опасность эту, хотя к счастью и не очень большую, несет с собой вибрация.

Во время старта работают мощные двигатели, и вся конструкция ракеты подвергается сильной вибрации. Вибрация передается телу космонавта и может повести за собой весьма неприятные для него последствия.

Вредное влияние вибрации на организм человека известно уже давно. Действительно, рабочие, пользующиеся более или менее длительное время пневматическим молотом или буром, заболевают так называемой вибрационной болезнью, которая проявляется не только сильными болями мышц и суставов верхних конечностей, но и болями в области живота, сердца, головы. Появляется одышка и затрудняется дыхание. Чувствительность организма в значительной степени зависит от того, какой из внутренних органов подвержен больше всего действию вибрации. По-разному реагируют на вибрацию внутренние органы пищеварения, легкие, верхние и нижние конечности, глаза, мозг, горло, бронхи и т. д.

Установлено, что вибрация космического корабля вредно действует на все ткани и органы человеческого организма - причем хуже всего переносится вибрация большой частоты, то есть такая, которую трудно заметить без точных приборов. Во время опытов с животными и людьми установлено, что у них под влиянием вибрации сначала увеличивается сердцебиение, возрастает давление крови, потом появляются изменения в составе крови: уменьшается количество красных кровяных телец, увеличивается количество белых. Нарушается общий обмен веществ, снижается уровень витаминов в тканях, появляются изменения в костях. Интересно, что температура тела во многом зависит от частоты вибрации. При увеличении частоты колебаний растет температура тела, при снижении частоты - температура снижается.

Поэтому ничего удивительного нет в том, что вибрация космического корабля может стать причиной значительных нарушений в жизнедеятельности организма и может отрицательно сказаться на умственной работе космонавта.

Конечно, последствия вибрации могут стать грозными при длительном ее воздействии на человеческий организм. Если бы космонавтам пришлось переносить вибрацию в течение нескольких дней, это привело бы к полному и необратимому расстройству жизнедеятельности, со всеми вытекающими отсюда последствиями.

К счастью, проблема эта не столь велика, как это кажется на первый взгляд. Дело в том, что длительность вибрации во время старта ракеты составляет всего лишь несколько минут, и хотя экипаж космического корабля испытывает при этом некоторые неудобства, но длятся они столь краткое время, что не приносят никакого вреда. Несколько дольше длится вибрация во время прохождения корабля через атмосферу при посадке. Но и это не так уж опасно. Кроме того, специальная конструкция гибкой и эластической подвески кресел, изолирующая космонавтов от корпуса ракеты, а также мягкая, пластмассовая обивка сидений и спинок кресел значительно снижают вибрацию, передающуюся от корпуса ракеты к телу космонавта.


Тамбовское областное государственное общеобразовательное учреждение

Общеобразовательная школа – интернат с первоначальной летной подготовкой

имени М. М. Расковой

Реферат

«Перегрузки в авиации»

Выполнил: воспитанник 103 взвода

Зотов Вадим

Руководитель: Пеливан В.С.

Тамбов 2006 г

1. Вступление.

2. Вес тела.

3. Перегрузка.

4. Перегрузки при выполнении фигур высшего пилотажа.

5. Ограничения по перегрузке. Невесомость.

6. Заключение.

ПЕРЕГРУЗКИ В АВИАЦИИ

1. Вступление.

Силы тяготения являются, очевидно, первыми, с которыми мы знакомимся еще с детских лет. В физике их часто называют гравитационными (от латинского – тяжесть).

Значение сил тяготения в природе огромно. Они играют первостепенную роль в образовании планет, в распределении вещества в глубинах небесных тел, определяют движение звезд, планетных систем и планет, удерживают около планет атмосферу. Без сил тяготения невозможной была бы жизнь и само существование вселенной, а значит, и нашей Земли.

Сооружая здания и каналы, проникая в глубь Земли или в космическое пространство, конструируя корабль или шагающий экскаватор, добиваясь результатов почти в любом виде спорта, человек всюду имеет дело с силой тяготения.

Великие и таинственные силы тяготения были предметом размышления выдающихся умов человечества: от Платона и Аристотеля в древнем мире до ученых эпохи Возрождения – Леонардо да Винчи, Коперника, Галилея, Кеплера, от Гука и Ньютона до нашего современника Эйнштейна.

При рассмотрении гравитационных сил используются различные понятия, в числе которых сила тяготения, сила тяжести, вес.

2. Вес тела.

Вес – есть сила, с которой вследствие земного притяжения тело давит на опору или натягивает подвес.

В аэродинамике под весом тела понимают несколько иную величину.

На самолет при полете действуют аэродинамические силы (подъемная сила и лобовое сопротивление), сила тяги двигательной установки и сила земного притяжения, которую называют весом и обозначают G.

где m – масса летательного аппарата, g – ускорение свободного падения.

Вес – одна из самых сложных сил в природе. Вы знаете, что вес – величина непостоянная, он меняется в зависимости от характера движения тела.

Если тело движется без ускорения, то вес тела равен силе тяжести и определяется по формуле P = mg.

Если тело движется с ускорением вверх, т. е. с ускорением противоположно направленным ускорению свободного падения (а↓g), то вес тела увеличивается, определяется по формуле P = m(g+a) и возникает перегрузка.

Если тело движется с ускорением вниз, т. е. с ускорением сонаправленным с ускорением свободного падения (а ↓↓g), то вес тела определяется по формуле P = m(g-a), и в этом случае возможны несколько вариантов:

если |a|<|g|, то вес тела уменьшается (становится меньше силы тяжести), и возникает состояние частичной невесомости;

если |a|=|g|, то вес тела равен 0, возникает состояние полной невесомости (т. е. тело свободно падает);

если |a|>|g|, то вес тела становится отрицательным и возникает отрицательная перегрузка.

3. Перегрузки.

Перегрузкой называется отношение суммы всех сил, кроме силы веса, действующих на самолет, к весу самолета, и определяется по формуле:

где P – тяга двигателя, R – суммарная аэродинамическая сила.

Стрелки над символами в формуле указывают, что учитывается направление действия сил, поэтому силы нельзя складывать алгебраически.

Например, если аэродинамическая сила R и тяга двигателя P лежат в плоскости симметрии, то их сумма R+P, определяется, как показано на рисунке 4.14.

В большинстве случаев пользуются не суммарной перегрузкой n, а ее проекциями на оси скоростной системы координат – n x , n y , n z как показано на рисунке 4.15.

Существуют три вида перегрузки: нормальная, продольная и боковая.

Нормальная перегрузка n y определяется в первую очередь подъемной силой и определяется по формуле:

где Y – подъемная сила.

На заданной скорости и высоте полета изменить нормальную перегрузку можно путем изменения угла атаки. Как показано на рисунке с уменьшением скорости полета предельные нормальные перегрузки возрастают, а с увеличением высоты – уменьшаются. При отрицательном угле атаки возникают отрицательные перегрузки.

Продольная перегрузка n x определяется отношением разности сил тяги двигателя (Р) и лобового сопротивления (Q) к весу самолета:

n x = (P-Q) / G.

Продольная перегрузка положительна, если тяга больше лобового сопротивления, и отрицательна, если тяга меньше лобового сопротивления или если тяги вообще нет.

Таким образом, знак продольной перегрузки зависит от соотношения величин тяги двигателя и лобового сопротивления самолета.

С увеличением высоты полета положительные продольные перегрузки n х уменьшаются, т. к. уменьшается избыточность тела. Зависимость продольной перегрузки от высоты и скорости полета изображена на рисунке.

Боковая перегрузка n z возникает при несимметричном обтекании самолета воздушным потоком. Это наблюдается при наличии скольжения, либо при отклонении руля направления.

4. Перегрузки при выполнении фигур высшего пилотажа.

Рассмотрим, какие перегрузки возникают при выполнении фигур высшего пилотажа.

На самолетах в разных пилотажных фигурах перегрузка действует по-разному.

Например, на самолете Л-39 при выполнении полупетли необходимо выдерживать оптимальные изменения перегрузки.

Полупетля – фигура пилотажа, при выполнении которой самолет описывает восходящую часть петли Нестерова с последующим поворотом относительно продольной оси на 180 0 и выводом в горизонтальный

полет в направлении, обратном вводу.

При выполнении данной фигуры можно отметить несколько отсчетных точек:

1. Ввод в полупетлю.

2. Угол кабрирования 50 0 – 60 0 . Перегрузка в данной

точке 4,5 – 5 ед.

3. Угол кабрирования 90 0 . Перегрузка 3,5 – 4 ед.

4. Начало ввода в полубочку. Перегрузка

приблизительно равна 1ед.

5. Вывод из полубочки.

При перегрузке больше оптимальной резко увеличивается лобовое сопротивление и быстро падает скорость, возможен выход самолета на режим тряски и сваливания. При перегрузке меньше оптимальной увеличивается время выполнения фигуры и скорость в верхней точке также становится менее заданной.

Рассмотрим еще одну фигуру высшего пилотажа – переворот.

Переворот – это фигура пилотажа, при выполнении которой самолет поворачивается относительно продольной плоскости оси на 180 0 с последующим движением по нисходящей траектории в вертикальной плоскости и выводом в горизонтальный полет в направлении, обратном вводу.

При выполнении переворота на Л-39, в первой половине траектории составляющая силы веса (Gcosθ) способствует искривлению траектории, поэтому на этом участке достаточно небольшое значение нормальной перегрузки 2 – 3 ед. Во второй половине эта же сила препятствует искривлению траектории, поэтому для вывода самолета из пикирования необходима большая перегрузка 3,5 – 4,5 ед. При перевороте происходит зависание самолета, возникновение отрицательных перегрузок в положении «вверх колесами» летчик устраняет, взяв РУС на себя, увеличивает перегрузку до допустимой и создает необходимое угловое вращение.

На Як-52 , например, при выполнении пикирования, при вводе в пикирование появляется отрицательная перегрузка. При выводе из пикирования потеря высоты определяется скоростью, углом пикирования и перегрузкой, создаваемой летчиком.

При выводе из виража «Горки», во избежание возникновения больших отрицательных перегрузок, вывод летчик производит плавным движением ручки управления от себя.

«Пикирование» «Горка»

Еще одной захватывающей фигурой высшего пилотажа является петля Нестерова.

Петля Нестерова – фигура пилотажа, при выполнении которой самолет описывает траекторию в вертикальной плоскости, расположенную выше точки ввода.

При выполнении петли Нестерова на Як-52 летчик должен следить по нарастанию перегрузки за созданием угловой скорости. Необходимо создать угловую скорость вращения с таким расчетом, чтобы при угле кабрирования 40 0 – 50 0 перегрузка была равна 4 – 4,5 ед. При выводе самолета из петли летчик должен следить за темпом нарастания перегрузки.

Земные Перегрузки

При столкновении автомобиля с неподвижной преградой сидящий в автомобиле человек испытает перегрузку спина-грудь. Такая перегрузка переносится без особых трудностей. Обычный человек может выдерживать перегрузки до 15 g около 3 - 5 секунд без потери сознания. Перегрузки от 20 - 30 g и более человек может выдерживать без потери сознания не более 1 - 2 секунд и зависимости от величины перегрузки.

Перегрузки применительно к человеку:

1 - 1 g .

3 - 15 g в течение 0,6 сек.

5 - 22 g .

Одно из основных требований к военным летчикам и космонавтам - способность организма переносить перегрузки. Тренированные пилоты в противоперегрузочных костюмах могут переносить перегрузки от −3 … −2 g до +12 g . Сопротивляемость к отрицательным, направленным вверх перегрузкам, значительно ниже. Обычно при 7 - 8 g в глазах «краснеет», пропадает зрение, и человек постепенно теряет сознание из-за прилива крови к голове. Космонавты во время взлёта переносят перегрузку лёжа. В этом положении перегрузка действует в направлении грудь - спина, что позволяет выдержать несколько минут перегрузку в несколько единиц g. Существуют специальные противоперегрузочные костюмы, задача которых - облегчить действие перегрузки. Костюмы представляют из себя корсет со шлангами, надувающимися от воздушной системы и удерживавшими наружную поверхность тела человека, немного препятствуя оттоку крови.

Космические перегрузки

При старте на космонавта действует ускорение, величина которого изменяется от 1 до 7 g.

Перегрузки, связанные с ускорением, вызывают значительное ухудшение функционального состояния организма человека: замедляется ток крови в системе кровообращения, снижаются острота зрения и мышечная активность.

С наступлением состояния невесомости у космонавта могут возникнуть вестибулярные расстройства, длительное время сохраняется чувство тяжести в области головы (за счет усиленного притока крови к ней). Вместе с тем адаптация к невесомости происходит, как правило, без серьезных осложнений: человек сохраняет работоспособность и успешно выполняет различные рабочие операции, в том числе те из них, которые требуют тонкой координации или больших затрат энергии. Двигательная активность в состоянии невесомости требует гораздо меньших энергетических затрат, чем аналогичные движения в условиях весомости.

При продольном ускорении у космонавта возникают зрительные иллюзии. Ему кажется, что предмет, на который он смотрит, смещается в направлении результирующего вектора ускорения и силы тяжести.

При угловых ускорениях возникает кажущееся перемещение объекта зрения в плоскости вращения. Эта так называемая окологиральная иллюзия является следствием воздействия перегрузок на полукружные каналы (органы внутреннего уха).

Вывод:

Если приток крови в состоянии невесомости на порядок больше чем на Земле, то и потеря сознания из за чрезмерного притока крови к голове будет как при меньшем g , так и по сумме сек которые может выдержать космонавт.. Но есть один + Т.к мы в далеком будущем наши противоперегрузочные костюмы например которые в комплекте с 350р будут на порядок лучше способствовать сохранения сознания при сильных и длительных перегрузках + должна спасать искусственная гравитация которая за 2-5 сек должна создавать противовес перегрузкам.

По данным медиков, головной мозг человека может выдержать перегрузки около 150 g, если они действуют на мозг не более 1–2 мс; со снижением перегрузок растет время, в течение которого человек может их испытывать, а перегрузка 40 g даже при длительном воздействии считается относительно безопасной для головы.

Безопасной считается перегрузка до 72 g, в промежуточную «красную» зону попадают перегрузки от 72 до 88 g, а при превышении 88 g травма головы считается высоковероятной. Немаловажной в методике EuroNCAP является и оценка давления, действующего на грудь человека: безопасным считается сжатие грудной клетки на 22 мм, предельным – сжатие на 50 мм.

22 марта 1995 года космонавт Валерий Поляков вернулся из космоса после 438 суток полета. Этот рекорд продолжительности не побит до сих пор. Он стал возможен в результате постоянно проводимых на орбите исследований влияния космических факторов на человеческий организм.

1. Перегрузки при старте и посадке

Пожалуй, именно Поляков как никто другой был подготовлен к тому, чтобы пробыть на орбите полтора года. И не потому, что у него якобы феноменальное здоровье. И предполетной подготовкой он занимался не более других. Просто Поляков, будучи профессиональным врачом — кандидатом медицинских наук, работавшим в Институте медико-биологических проблем РАН, как никто другой в отряде космонавтов знал «устройство человека», реакции организма на дестабилизирующие факторы и методы их компенсации. Какие же они?

При старте космического корабля перегрузки лежат в диапазоне от 1g до 7g. Это крайне опасно, если перегрузка действует по вертикальной оси, то есть от головы к ногам. В таком положении у человека даже при перегрузке в 3g, действующей три секунды, возникают серьезные нарушения периферического зрения. При превышении этих значений изменения могут стать необратимыми, а человек гарантированно теряет сознание.

Поэтому кресло в корабле размещается так, что ускорение действует в горизонтальной плоскости. Также космонавт использует специальный компенсационный костюм. Это дает возможность поддерживать нормальное мозговое кровообращение при длительных перегрузках в 10g, а кратковременных — до 25g. Крайне важной также оказывается скорость нарастания ускорения. Если она превышает определенную границу, то губительными для космонавта могут стать даже незначительные перегрузки.

После длительного пребывания на орбите растренированный организм переносит перегрузки, возникающие при посадке, куда тяжелее, чем при старте. Поэтому космонавт за несколько дней до посадки готовится по специальной методике, предполагающей физические упражнения и медикаментозные средства. При посадке имеет огромное значение такая ориентация корабля в плотных слоях атмосферы, чтобы ось перегрузки располагалась горизонтально. Во время первых космических полетов достичь должной стабилизации корабля не удавалось, в связи с чем космонавты при посадке порой теряли сознание.

2. Невесомость

Невесомость является куда более сложным испытанием для организма, чем перегрузки. Потому что действует длительно и беспрерывно, вызывая изменения ряда жизненных функций в организме человека. Так, невесомость ставит центральную нервную систему и рецепторы многих анализаторных систем (вестибулярного аппарата, мышечно-суставного аппарата, кровеносных сосудов) в необычные условия функционирования. В результате замедляется кровоток, кровь скапливается в верхней части туловища.

«Подлость» невесомости состоит в том, что приспособительные процессы в физиологических системах, степень их проявления практически не зависит от индивидуальных особенностей организма, а только лишь от продолжительности пребывания в невесомости. То есть, как бы человек ни готовился к ней на земле, каким бы могучим ни был его организм, на процесс адаптации это мало влияет.

Правда, к невесомости человек довольно быстро привыкает: прекращаются головокружения и прочие негативные явления. Плоды невесомости космонавт «вкушает», вернувшись на землю.

Если на орбите не использовать никаких методов противостояния разрушительному действию невесомости, то в первые несколько суток у приземлившегося космонавта наблюдаются следующие изменения:

1. Нарушение процессов обмена веществ, особенно водно-солевого обмена, что сопровождается относительным обезвоживанием тканей, снижением объема циркулирующей крови, уменьшением содержания в тканях ряда элементов, в частности калия и кальция;

2. Нарушение кислородного режима организма при физических нагрузках;

3. Нарушение способности поддерживать вертикальную позу в статике и динамике; ощущение тяжести частей тела (окружающие предметы воспринимаются как необычно тяжелые; наблюдается растренированность в дозировании мышечных усилий);

4. Нарушение гемодинамики при работе средней и высокой интенсивности; возможны предобморочные и обморочные состояния после перехода из горизонтального положения в вертикальное;

5. Снижение иммунитета.

На орбите используется целый комплекс мер борьбы с разрушающим организм действием невесомости. Повышенное потребление калия и кальция. Отрицательное давление, приложенное к нижней половине тела для оттока крови. Барокомпенсационное белье. Электростимуляция мышц. Дозированный прием медикаментов. Тренировка на беговой дорожке и других тренажерах.

3. Гиподинамия

Беговая дорожка и различные тренажеры мускулатуры используются и для борьбы с гиподинамией. На орбите она неизбежна, поскольку движения в условиях невесомости требуют значительно меньших усилий, чем на земле. И вернувшись на землю даже после ежедневных изнурительных тренировок, у космонавтов наблюдается снижение мышечной массы. Помимо этого физическая нагрузка благотворно действует на сердце, которое, как известно, также является мышцей.

4. Радиация

Действие этого фактора на человеческий организм прекрасно изучено. Всемирная организация здравоохранения выработала нормативы доз радиации, превышение которых вредно для здоровья. На космонавтов эти нормативы не распространяются.

Считается, что человек может проходить флюорографию не более одного раза в год. При этом он получает дозу в 0,8 мЗв (миллизиверт). Космонавт ежедневно получает дозу до 3,5 мЗв. Однако по меркам космической медицины такой радиационный фон считается допустимым. Поскольку в определенной мере он нейтрализуется медикаментозно. Ежедневная доза облучения не является константой. У каждого космонавта имеется индивидуальный дозиметр, который ведет подсчет накапливающихся в организме миллизивертов. За год пребывания в космосе можно получить от 100 до 300 мЗв.

«Конечно, это не подарок, — утверждает заведующий лабораторией методов и средств космической дозиметрии Института медико-биологических проблем РАН Вячеслав Шуршаков, — но такова специфика профессии космонавтов».

При этом ежегодная пороговая доза — 500 мЗв. Что в 25 превышает порог для сотрудников атомных электростанций, который составляет 20 мЗв.

Ну, а суммарная доза, после которой космонавта не допускают к полетам, — 1000 мЗв. В те же времена, когда летал Гагарин, эта цифра равнялась 4000 мЗв. Наиболее близко подошел к порогу Сергей Авдеев, в общей сложности налетавший 747 суток. Полученная им доза составляет 380 мЗв.

Фото ИТАР-ТАСС/Альберт Пушкарев

Самолёта. Перегрузка - безразмерная величина, однако часто единица перегрузки обозначается так же, как ускорение свободного падения , g . Перегрузка в 1 единицу (или 1g) означает прямолинейный полет, 0 - свободное падение или невесомость. Если самолёт выполняет вираж на постоянной высоте с креном 60 градусов, его конструкция испытывает перегрузку в 2 единицы.

Допустимое значение перегрузок для гражданских самолётов составляет 2,5. Обычный человек может выдерживать любые перегрузки до 15G около 3-5 сек без отключения, но большие перегрузки от 20-30G и более человек может выдерживать без отключения не более 1-2 сек и зависимости от размера перегрузки, например 50G=0.2 сек. Тренированные пилоты в антиперегрузочных костюмах могут переносить перегрузки от −3…−2 до +12 . Сопротивляемость к отрицательным, направленным вверх перегрузкам, значительно ниже. Обычно при 7-8 G в глазах «краснеет» и человек теряет сознание из-за прилива крови к голове.

Перегрузка - векторная величина, направленная в сторону изменения скорости. Для живого организма это принципиально. При перегрузке органы человека стремятся оставаться в прежнем состоянии (равномерного прямолинейного движения или покоя). При положительной перегрузке (голова-ноги) кровь уходит от головы в ноги. Желудок уходит вниз. При отрицательной-кровь подступает в голову. Желудок может вывернуться вместе с содержимым. Когда в неподвижную машину врезается другое авто - сидящий испытает перегрузку спина-грудь. Такая перегрузка переносится без особых трудностей. Космонавты во время взлёта переносят перегрузку лёжа. В этом положении вектор направлен грудь-спина, что позволяет выдержать несколько минут . Противоперегрузочных средств космонавты не применяют. Они представляют из себя корсет с надуваемыми шлангами, надувающимися от воздушной системы и удерживают наружную поверхность тела человека, немного препятствуя оттоку крови.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Перегрузка (авиация)" в других словарях:

    Перегрузка: Перегрузка (авиация) отношение подъёмной силы к весу Перегрузка (техника) в ускоряющихся объектах Перегрузка (шахматы) шахматная ситуация, когда фигуры (фигура) не в состоянии справиться с поставленными задачами. Перегрузка… … Википедия

    1) П. в центре масс отношение n результирующей силы R (сумма тяги и аэродинамической силы, см. Аэродинамические силы и моменты) к произведению массы летательного аппарата m на ускорение свободного падения g: n = R/mg (при определении П. для… … Энциклопедия техники

    Наибольшее nэymax и наименьшее nэymin допустимые по прочности конструкции значения нормальной перегрузки ny. Значение Э. п. определяется на основании Норм прочности для различных расчётных случаев, например для манёвра, полёта при болтанке. По… … Энциклопедия техники



Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.