Из каких последовательных фаз состоит митоз. Что такое митоз и какой в профазе митоза происходит процесс? Тесты и задания

Фаза G1характеризуется возобновлением интенсивных процессов биосинтеза, который в период митоза резко замедляется, а на короткое время цитокинеза – прекращается вовсе. Общее содержание белка за время этой фазы увеличивается непрерывно. Для большинства клеток существует критическая точка в фазе G1 так называемая точка рестрикции. При ее прохождении в клетке происходят внутренние изменения, после которых клетка должна пройти все последующие фазы клеточного цикла. Границу между фазами S и G2 определяет появление вещества - активатора S-фазы.

Фаза G2 рассматривается как период подготовки клетки к началу митоза. Ее длительность меньше остальных периодов. В ней происходит синтез белков деления (тубулин) и наблюдается фосфорилирование белков, участвующих в конденсации хроматина.

  • Профаза

  • Во время профазы происходят два параллельных процесса. Это постепенная конденсация хроматина, появление отчетливо видимых хромосом и дезинтеграция ядрышка, а также формирование веретена деления, обеспечивающего правильное распределение хромосом между дочерними клетками. Эти два процесса пространственно разделены ядерной оболочкой, которая сохраняется в течение всей профазы и разрушается только в ее конце. Центром организации микротрубочек у большинства животных и некоторых растительных клеток служит клеточный центр или центросома. В интерфазной клетке он располагается сбоку от ядра. В центральной части центросомы располагаются две центриоли, погруженные в ее материал под прямым углом друг к другу. От периферической части центросомы отходят многочисленные трубочки, образованные белком тубулином. Они существуют и в интерфазной клетке, образуя в ней цитоскелет. Микротрубочки пребывают в состоянии очень быстрой сборки и разборки. Они нестабильны и их массив постоянно обновляется. Например, в клетках фибробластов в культуре in vitro среднее время жизни микротрубочек составляет менеее 10 мин. В начале митоза микротрубочки цитоплазмы распадаются, а затем начинается их восстановление. Сначала они появляются в околоядерной зоне, формируя лучистую структуру – звезду. Центром ее образования является центросома. Микротрубочки являются полярными структурами так как молекулы тубулина, из которых они образуются ориентированы определенным образом. Один конец ее удлиняется втрое быстрее других. Быстро растущие концы названы плюс концами, медленно растущие минус-концами. Плюс концы ориентированы вперед по направлению роста. Центриоль – это небольшая цилиндрическая органелла толщиной около 0,2 мкм и длиной 0,4 мкм. Ее стенку образуют девять групп триплетов трубочек. В триплете одна трубочка полная и две примыкающие к ней неполные. Каждый триплет наклонен в сторону центральной оси. Соседние триплеты соединены между собой поперечными сшивками. Новые центриоли возникают только путем удвоения уже существующих. Этот процесс совпадает со временем синтеза ДНК в S-фазе. В G1 периоде происходит раздвигание центриолей, образующих пару, на несколько микрон. Затем на каждой из центриолей, в ее средней части, под прямым углом строится дочерняя центриоль. Рост дочерних центриолей завершается в G2 фазе, но они еще погружены в единую массу центросомного материала. В начале профазы каждая пара центриолей становится частью отдельной центросомы, от которой отходит радиальный пучок микротрубочек – звезда. Сформировавшиеся звезды отодвигаются друг от друга по двум сторонам ядра, становясь впоследствии полюсами веретена деления.

  • Метафаза

  • Прометафаза начинается с быстрого распада ядерной оболочки на мембранные фрагменты, не отличимые от фрагментов ЭПС. Они сдвигаются к периферии клетки хромосомами и веретеном деления. На центромерах хромосом образуется белковый комплекс, который на электронных фотографиях выглядит как пластинчатая трехслойная структура – кинетохор. Обе хроматиды несут по одному кинетохору, именно к нему прикрепляются белковые микротрубочки веретена деления. Методами молекулярной генетики выяснено, что информация определяющая специфическую конструкцию кинетохоров заключена в нуклеотидной последовательности ДНК в районе центромеры. Микротрубочки веретена, прикрепленные к кинетохорам хромосом играют очень важную роль, они во-первых, ориентируют каждую хромосому относительно веретена деления так, чтобы два ее кинетохора были обращены к противоположным полюсам клетки. Во-вторых, микротрубочки перемещают хромосомы, чтобы их центромеры оказались в плоскости экватора клетки. Этот процесс в клетках млекопитающих занимает от 10 до 20 мин и завершается к концу прометафазы. Число микротрубочек, связанных с каждым кинетохором, различно у разных видов. У человека их бывает от 20 до 40, у дрожжей – 1. С хромосомами связываются плюс концы микротрубочек. Кроме кинетохорных микротрубочек веретено деления содержит еще полюсные микротрубочки, которые отходят от противоположных полюсов и на экваторе сшиваются специальными белками. Микротрубочки, которые отходят от центросомы и не включаются в веретено деления, называют астральными они образуют звезду.

    Метафаза. Занимает значительную часть митоза. Она легко распознается по двум признакам: двухполюсной структуре веретена деления и метафазной хромосомной пластинке. Это относительно стабильное состояние клетки, многие клетки можно оставить в метафазе на несколько часов или дней, если их обработать веществами деполимеризующими трубочки веретена. После удаления агента митотическое веретено способно к восстановлению и клетка способна завершить митоз.

  • Анафаза

  • Анафаза начинается быстрым синхронным расщеплением всех хромосом на сестринские хроматиды, каждая из которых имеет свой кинетохор. Расщепление хромосом на хроматиды связано с репликацией ДНК в районе центромеры. Репликация такого небольшого участка происходит за несколько секунд. Сигнал к началу анафазы исходит из цитозоля, он связан с кратковременным быстрым повышением концентрации ионов кальция в 10 раз. Электронная микроскопия показала, что у полюсов веретена происходит скопление мембранных пузырьков, богатых кальцием. В ответ на анафазный сигнал сестринские хроматиды начинают движение к полюсам. Это связано сначала с укорочением кинетохорных трубочек (анафаза А), а затем – раздвигание самих полюсов,связанное с удлинением полярных микротрубочек (анафаза В). Процессы относительно самостотельны, на что указывает их разная чувствительность к ядам. У разных организмов вклад анафазы А и анафазы В в окончательное расхождение хромосом различен. Например, в клетках млекопитающих анафаза В начинается вслед за анафазой А и заканчивается, когда веретено достигает длины в 1,5-2 раза больше, чем в метафазе. У простейших анафаза В преобладает, в силу чего веретено удлиняется в 15 раз. Укорочение кинетохорных трубочек идет путем их деполимеризации. Субъединицы теряются с плюс конца, т.е. со стороны кинетохора, в результате кинетохор передвигается вместе с хромосомой к полюсу. Что касается полюсных микротрубочек. То в анафазе происходит их сборка и удлинение по мере расхождение полюсов. К концу анафазы хромосомы полностью разделяются на две идентичные группы на полюсах клетки.

    Деление ядра и цитоплазмы связаны. Важную роль при этом играет митотическое веретено. В животных клетках уже в анафазе в плоскости экватора веретена появляется борозда деления. Она закладывается под прямым углом к длинной оси митотического веретена. Образование борозды обусловлено активностью сократимого кольца, которое располагается под мембраной клетки. Оно состоит из тончайших нитей – актиновых филаментов. Сократимое кольцо обладает силой, достаточной для того, чтобы согнуть тонкую стеклянную иглу, введенную в клетку. По мере углубления борозды толщина сократимого кольца не увеличивается, так как часть филаментов теряется при уменьшении его радиуса. После завершения цитокинеза сократимое кольцо полностью распадается, плазматическая мембрана в области борозды деления стягивается. Некоторое время в зоне контакта вновь образованных клеток сохраняется тельце из остатков тесно упакованных микротрубочек. В растительных клетках, имеющих жесткую клеточную оболочку, цитоплазма разделяется путем образования новой стенки на границе между дочерними клетками. В растительных клетках нет сократимого кольца. В плоскости экватора клетки формируется фрагмопласт, постепенно расширяющийся от центра клетки к ее периферии, пока растущая клеточная пластинка не достгнет плазматической мембраны материнской клетки. Мембраны сливаются, полностью разделяя образовавшиеся клетки.

    Митоз (кариокинез, непрямое деление) - это процесс деления ядра клеток человека, животных и растений с последующим разделением цитоплазмы клетки. В процессе деления ядра клетки (см.) различают несколько стадий. В ядре, находящемся в периоде между делением клетки (интерфаза), (см.) обычно представлены тонкими, длинными (рис., а), переплетающимися между собой нитями; хорошо видна оболочка ядра и ядрышко.

    Ядро на разных фазах митоза: а - интерфазное неделящееся ядро; б - г - стадия профазы; д - стадия метафазы; е - стадия анафазы; ж и з - стадия телофазы; и - образование двух дочерних ядер.

    В первой стадии митоза, так называемой профазе, хромосомы становятся хорошо видимыми (рис., б-г), происходит их укорачивание и утолщение, вдоль каждой хромосомы появляется щель, разделяющая ее на две совершенно подобные друг другу части, благодаря чему каждая хромосома оказывается двойной. В следующей стадии митоза - метафазе оболочка ядра разрушается, ядрышко растворяется и хромосомы оказываются лежащими в цитоплазме клетки (рис., д). Все хромосомы располагаются в один ряд по экватору, образуя так называемую экваториальную пластинку (стадия звезды). Претерпевает изменения и центросома. Она делится на две части, расходящиеся к полюсам клетки, между ними образуются нити, формирующие двухконусное ахроматиновое веретено (рис., д. е).

    Митоз (от греч. mitos - нить) - это непрямое деление клетки, заключающееся в равномерном распределении удвоенного числа хромосом между двумя образующимися дочерними клетками (рис.). В процессе митоза участвуют два рода структур: хромосомы и ахроматиновый аппарат, включающий в себя клеточные центры и веретено (см. Клетка).


    Схематическое изображение интерфазного ядра и различных стадий митоза: 1 - интерфаза; 2 - профаза; 3 - прометафаза; 4 и 5- метафаза (4 - вид с экватора, 5 - вид с полюса клетки); 6 - анафаза; 7 - телофаза; 8 - поздняя телофаза, начало реконструкции ядер; 9 - дочерние клетки в начале интерфазы; ЯО - ядерная оболочка; ЯК - ядрышко; ХР - хромосомы; Ц - центриоль; В - веретено.

    Первая стадия митоза - профаза - начинается с появления в ядре клетки тонких нитей - хромосом (см.). Каждая профазная хромосома состоит из двух хроматид, тесно прилегающих друг к другу по длине; одна из них - хромосома материнской клетки, другая - новообразованная за счет редупликации ее ДНК на ДНК материнской хромосомы в интерфазе (пауза между двумя митозами). По мере прохождения профазы происходит спирализация хромосом, вследствие чего они укорачиваются и утолщаются. К концу профазы исчезает ядрышко. В профазе происходит также развитие ахроматинового аппарата. В клетках животных клеточные центры (центриоли) раздваиваются; вокруг них в цитоплазме возникают зоны, сильно преломляющие свет (центросферы). Эти образования начинают расходиться в противоположных направлениях, образуя к концу профазы два полюса клетки, которая к этому времени часто приобретает шаровидную форму. В клетках высших растений центриоли отсутствуют.

    Прометафаза характеризуется исчезновением ядерной оболочки и образованием в клетке веретеновидной нитчатой структуры (ахроматиновое веретено), часть нитей которой соединяет полюсы ахроматинового аппарата (интерзональные нити), а другие - каждую из двух хроматид с противоположными полюсами клетки (тянущие нити). Хромосомы, беспорядочно лежавшие в профазном ядре, начинают перемещаться в центральную зону клетки, где располагаются в экваториальной плоскости веретена (метакинез). Эта стадия называется метафазой.

    Во время анафазы происходит расхождение партнеров каждой пары хроматид к противоположным полюсам клетки за счет сокращения тянущих нитей веретена. С этого времени каждая хроматида получает название дочерней хромосомы. Разошедшиеся к полюсам хромосомы собираются в компактные группы, что характерно для следующей стадии митоза - телофазы. При этом хромосомы начинают постепенно деспирализоваться, утрачивая плотное строение; вокруг них появляется ядерная оболочка - начинается процесс реконструкции ядер. Происходит увеличение объема новых ядер, в них появляются ядрышки (начало интерфазы, или стадии «покоящегося ядра»).

    Процесс разделения ядерного вещества клетки - кариокинез - сопровождается разделением цитоплазмы (см.) - цитокинез. У клеток животных в телофазе в области экваториальной зоны появляется перетяжка, которая, углубляясь, приводит к разделению цитоплазмы исходной клетки на две части. У клеток растений в экваториальной плоскости из мелких вакуолей эндоплазматического ретикулума образуется клеточная перегородка, отделяющая друг от друга два новых клеточных тела.

    К митозу в принципе близок эндомитоз, т. е. процесс удвоения числа хромосом в клетках, но без разделения ядер. Вслед за эндомитозом может происходить прямое деление ядер и клеток, так называемый амитоз.

    См. также Кариотип, Ядро клетки.

    Каждый день в нашем теле происходят незаметные для человеческого глаза и сознания изменения: клетки организма обмениваются друг с другом веществами, синтезируют белки и жиры, разрушаются, взамен них создаются новые.

    Если человек случайно порежет руку за готовкой, спустя несколько дней рана затянется, и на ее месте останется лишь белесый шрам; каждые несколько недель наша кожа полностью сменяется; в конце концов, любой из нас когда-то был одной крошечной клеткой и образован многократными её делениями.

    В основе всех этих важнейших процессов, без которых невозможна была бы сама жизнь, лежит митоз. Ему можно дать краткое определение: митоз (также его называют кариокинезом) – это непрямое деление клетки, с помощью которого образуются две клетки, совпадающие с исходной по генетическому набору.

    Биологическое значение и роль митоза

    Для митоза типично копирование информации, содержащейся в ядре в виде молекул ДНК, причем в генетический код не вносится никаких изменений, в отличие от мейоза, поэтому из материнской клетки образуются две дочерние, абсолютно идентичные ей, обладающие такими же свойствами.

    Таким образом, биологический смысл митоза содержится в поддержании генетической неизменности и постоянства свойств клеток.

    Клетки, прошедшие через митотическое деление, имеют в себе генетическую информацию о строении всего организма, поэтому его развитие вполне возможно из одной-единственной клетки. Это является основой вегетативного размножения растений: если взять клубень картофеля или лист, сорванный с фиалки, и поместить в подходящие условия, удастся вырастить целое растение.

    В сельском хозяйстве важно сохранять постоянную урожайность, плодовитость, устойчивость к вредителям и условиям среды, потому понятно, почему по возможности используется именно вегетативный способ размножения растений.

    Также с помощью митоза происходит процесс регенерации – замены клеток и тканей. При повреждении или утрате части тела клетки начинают активно делиться, заменяя собой утраченные.

    Особо впечатляет регенерация у гидры – небольшого кишечнополостного животного, обитающего в пресной воде.

    Длина гидры – несколько сантиметров, на одном конце тела у неё располагается подошва, с помощью которой она прикрепляется к субстрату, а на другом — щупальца, служащие для захватывания пищи.

    Если разрезать тело на несколько частей, каждая из них будет способна восстановить недостающую, причем с сохранением пропорций и формы.

    К сожалению, чем сложнее устроен организм, тем слабее у него выражена регенерация, потому более развитые животные, в том числе и люди, могут о подобном и не мечтать.

    Стадии и схема митоза

    Всю жизнь клетки можно уложить в шесть фаз в следующей последовательности:

    Нажмите для увеличения

    Причем сам процесс деления состоит из последних пяти.

    Кратко митоз можно описать так: клетка создает и копит вещества, происходит удвоение ДНК в ядре, хромосомы выходят в цитоплазму, чему предшествует их спирализация, размещаются на экваторе клетки и растаскиваются в виде дочерних хромосом к полюсам с помощью нитей веретена деления.

    После все органоиды материнской клетки делятся примерно пополам, образуются две дочерних. Их генетический набор остается прежним:

    • 2n, если исходная была диплоидной;
    • n, если исходная была гаплоидной.

    Стоит отметить: в человеческом организме все клетки, исключая половые, содержат удвоенный набор хромосом (они называются соматическими), потому митоз происходит только в диплоидной форме.

    Гаплоидный митоз присущ растительным клеткам, в частности, гаметофитам, например, ростку папоротника в виде сердцевидной пластинки, листостебельному растению у мхов.

    Общую схему митоза можно изобразить следующим образом:

    Интерфаза

    Самому митозу предшествует длительная подготовка (интерфаза), и именно поэтому такое деление называется непрямым.

    В эту фазу происходит собственно жизнь клетки. Она синтезирует белки, жиры и АТФ, копит их, растёт, увеличивает количество органоидов для последующего деления.

    Стоит отметить: в интерфазе клетки находятся около 90% времени своей жизни.

    Она состоит из трех этапов в следующей очередности: пресинтетический (или G1), синтетический (S) и постсинтетический (G2).

    В пресинтетический период происходит основной рост клетки и накопление энергии в АТФ для будущего деления, хромосомный набор составляет 2n2c (где n – количество хромосом, а c – число молекул ДНК). Важнейшее событие синтетического периода – удвоение (или репликация, или редупликация) ДНК.

    Это происходит следующим образом: связи между соответственными друг другу азотистыми основаниями (аденин – тимин и гуанин – цитозин) разрываются с помощью специального фермента, а затем каждая из одинарных цепей достраивается до двойной по правилу комплементарности. Этот процесс изображен на следующей схеме:

    Таким образом хромосомный набор становится 2n4c, то есть появляются пары двухроматидных хромосом.

    В постсинтетический период интерфазы происходит окончательная подготовка к митотическому делению: количество органоидов увеличивается, также удваиваются центриоли.

    Профаза

    Главный процесс, с которого начинается профаза – это спирализация (или скручивание) хромосом. Они становятся более компактными, уплотняются, и в конце концов их возможно разглядеть в самый обычный микроскоп.

    Затем образуется веретено деления, состоящее из двух центриолей с микротрубочками, расположенными на разных полюсах клетки. Генетический набор, несмотря на изменение формы материала, остаётся прежним – 2n4c.

    Прометафаза

    Прометафаза является продолжением профазы. Её главное событие – это разрушение оболочки ядра, в результате которого хромосомы выходят в цитоплазму, располагаются в зоне бывшего ядра. Затем они размещаются в линию в экваториальной плоскости веретена деления, на чем прометафаза завершается. Набор хромосом не изменяется.

    Метафаза

    В метафазу хромосомы спирализуются окончательно, потому обычно их изучение и подсчет ведется именно в эту фазу.

    Затем к хромосомам, расположенным на экваторе клетки, с её полюсов «тянутся» микротрубочки и присоединяются к ним, готовые растащить в разные стороны.

    Анафаза

    После прикрепления к хромосоме концов микротрубочек с разных сторон, происходит их одновременное расхождение. Каждая хромосома «разрывается» на две хроматиды, и с этого момента они называются дочерними хромосомами.

    Нити веретена укорачиваются и тянут дочерние хромосомы к полюсам клетки, при этом хромосомный набор составляет в сумме 4n4c, а у каждого полюса – 2n2c.

    Телофаза

    Телофаза завершает митотическое деление клетки. Происходит деспирализация – раскручивание хромосом, приведение их в вид, в котором с них возможно считывать информацию. Ядерные оболочки заново образуются, а веретено деления разрушается за ненадобностью.

    Завершается телофаза разделением цитоплазмы и органоидов, отделением дочерних клеток друг от друга, формированием у каждой из них клеточных оболочек. Теперь эти клетки вполне самостоятельны, и каждая из них вступает заново в первую фазу жизни – интерфазу.

    Заключение

    Этой теме в биологии уделяется большое внимание, на уроках в школе ученики должны понять, что с помощью митоза все эукариотические организмы размножаются, растут, восстанавливаются после повреждений, без него не обходится ни одно обновление клеток или регенерация.

    Что немаловажно, митоз обеспечивает постоянство генов в ряду поколений, а значит и неизменность свойств, лежащую в основе наследственности.

    Временной ход митоза и цитокинеза, типичный для клетки млекопитающего. Точные цифры для разных клеток различны. Цитокинез берёт своё начало в анафазе и завершается, как правило,
    к окончанию телофазы

    Фаза клеточного цикла, соответствующая делению клетки, называется М-фазой. М-фазу условно подразделяют на шесть стадий, постепенно и непрерывно переходящих одна в другую. Первые пять — профаза, прометафаза, метафаза, анафаза и телофаза — составляют митоз, а берущий своё начало в анафазе процесс разделения цитоплазмы клетки, или цитокинез, протекает вплоть до завершения митотического цикла и, как правило, рассматривается в составе телофазы.

    Длительность отдельных стадий различна и варьируется в зависимости от типа ткани, физиологического состояния организма, внешних факторов. Наиболее продолжительны стадии сопряженные с процессами внутриклеточного синтеза: профаза и телофаза. Наиболее быстротечны фазы митоза, в ходе которых происходит движение хромосом: метафаза и анафаза. Непосредственно процесс расхождения хромосом к полюсам обычно не превышает 10 минут.

    Профаза

    К основным событиям профазы относят конденсацию хромосом внутри ядра и образование веретена деления в цитоплазме клетки. Распад ядрышка в профазе является характерной, но не обязательной для всех клеток особенностью.

    Условно за начало профазы принимается момент возникновения микроскопически видимых хромосом вследствие конденсации внутриядерного хроматина. Уплотнение хромосом происходит за счёт многоуровневой спирализации ДНК. Данные изменения сопровождаются повышением активности фосфорилаз, модифицирующих гистоны, непосредственно участвующие в компоновке ДНК. Как следствие, резко снижается транскрипционная активность хроматина, инактивируются ядрышковые гены, большая часть ядрышковых белков диссоциирует. Конденсирующиеся сестринские хроматиды в ранней профазе остаются спаренными по всей своей длине с помощью белков-когезинов, однако к началу прометафазы связь между хроматидами сохраняется лишь в области центромер. К поздней профазе на каждой центромере сестринских хроматид формируются зрелые кинетохоры необходимые хромосомам для присоединения к микротрубочкам веретена деления в прометафазе.

    Наряду с процессами внутриядерной конденсации хромосом в цитоплазме начинает формироваться митотическое веретено — одна из главных структур аппарата клеточного деления, ответственная за распределение хромосом между дочерними клетками. В образовании веретена деления у всех эукариотических клеток принимают участие полярные тельца, микротрубочки и кинетохоры хромосом.

    С началом формирования митотического веретена в профазе сопряжены разительные изменения динамических свойств микротрубочек. Время полужизни средней микротрубочки уменьшается примерно в 20 раз от 5 минут до 15 секунд. Однако скорость их роста увеличивается примерно в 2 раза по сравнению с теми же интерфазными микротрубочками. Полимеризующиеся плюс-концы являются «динамически нестабильными» и резко переходят от равномерного роста к быстрому укорочению, при котором часто деполимеризуется вся микротрубочка. Примечательно, что для правильного функционирования митотического веретена необходим определенный баланс между процессами сборки и деполимеризации микротрубочек, так как ни стабилизированные, ни деполимеризованные микротрубочки веретена не в состоянии перемещать хромосомы.

    Наряду с наблюдаемыми изменениями динамических свойств микротрубочек, слагающих нити веретена, в профазе закладываются полюса деления. Реплицированные в S-фазе центросомы расходятся в противоположных направлениях за счёт взаимодействия полюсных микротрубочек, растущих навстречу друг другу. Своими минус-концами микротрубочки погружены в аморфное вещество центросом, а процессы полимеризации протекают со стороны плюс-концов, обращенных к экваториальной плоскости клетки. При этом вероятный механизм расхождения полюсов объясняется следующим образом: динеино-подобные белки ориентируют в параллельном направлении полимеризующиеся плюс-концы полюсных микротрубочек, а кинезино-подобные белки в свою очередь расталкивают их в направлении к полюсам деления.

    Параллельно конденсации хромосом и формированию митотического веретена, во время профазы происходит фрагментация эндоплазматического ретикулума, который распадается на мелкие вакуоли, расходящиеся затем к периферии клетки. Одновременно рибосомы теряют связи с мембранами ЭПР. Цистерны аппарата Гольджи также меняют свою околоядерную локализацию, распадаясь на отдельные диктиосомы, без особого порядка распределенные в цитоплазме.

    Прометафаза

    Прометафаза

    Окончание профазы и наступление прометафазы, как правило, знаменуется распадом ядерной мембраны. Целый ряд белков ламины фосфорилируется, вследствие чего ядерная оболочка фрагментируется на мелкие вакуоли, а поровые комплексы исчезают. После разрушения ядерной мембраны хромосомы без особого порядка располагаются в области ядра. Однако вскоре все они приходят в движение.

    В прометафазе наблюдается интенсивное, но беспорядочное перемещение хромосом. Поначалу отдельные хромосомы стремительно дрейфуют к ближайшему полюсу митотического веретена со скоростью, достигающей 25 мкм/мин. Вблизи полюсов деления повышается вероятность взаимодействия новосинтезированных плюс-концов микротрубочек веретена с кинетохорами хромосом. В результате такого взаимодействия кинетохорные микротрубочки стабилизируются от спонтанной деполимеризации, а их рост отчасти обеспечивает отдаление соединенной с ними хромосомы в направлении от полюса к экваториальной плоскости веретена. С другой стороны хромосому настигают тяжи микротрубочек, идущие от противоположного полюса митотического веретена. Взаимодействуя с кинетохором, они также участвуют в движении хромосомы. В результате сестринские хроматиды оказываются связанными с противоположными полюсами веретена. Усилие, развиваемое микротрубочками от разных полюсов, не только стабилизирует взаимодействие этих микротрубочек с кинетохорами, но также, в конечном счёте, приводит каждую хромосому в плоскость метафазной пластинки.

    В клетках млекопитающих прометафаза протекает, как правило, в течение 10-20 минут. В нейробластах кузнечика данная стадия занимает всего 4 минуты, а в эндосперме Haemanthus и в фибробластах тритона — около 30 минут.

    Метафаза

    Метафаза

    В завершении прометафазы хромосомы располагаются в экваториальной плоскости веретена примерно на равном расстоянии от обоих полюсов деления, образуя метафазную пластинку. Морфология метафазной пластинки в клетках животных, как правило, отличается упорядоченным расположением хромосом: центромерные участки обращены к центру веретена, а плечи — к периферии клетки. В растительных клетках хромосомы зачастую лежат в экваториальной плоскости веретена без строгого порядка.

    Метафаза занимает значительную часть периода митоза, и отличается относительно стабильным состоянием. Все это время хромосомы удерживаются в экваториальной плоскости веретена за счёт сбалансированных сил натяжения кинетохорных микротрубочек, совершая колебательные движения с незначительной амплитудой в плоскости метафазной пластинки.

    В метафазе, также как и в течение других фаз митоза, продолжается активное обновление микротрубочек веретена путём интенсивной сборки и деполимеризации молекул тубулина. Несмотря на некоторую стабилизацию пучков кинетохорных микротрубочек, происходит постоянная переборка межполюсных микротрубочек, численность которых в метафазе достигает максимума.

    К окончанию метафазы наблюдается чёткое обособление сестринских хроматид, соединение между которыми сохраняется лишь в центромерных участках. Плечи хроматид располагаются параллельно друг другу, и становится отчетливо заметной разделяющая их щель.

    Анафаза

    Анафаза — самая короткая стадия митоза, которая начинается внезапным разделением и последующим расхождением сестринских хроматид в направлении противоположных полюсов клетки. Хроматиды расходятся с равномерной скоростью достигающей 0,5-2 мкм/мин., при этом они часто принимают V-образную форму. Их движение обусловлено воздействием значительных сил, оценочно 10 дин на хромосому, что в 10 000 раз превышает усилие, необходимое для простого продвижения хромосомы через цитоплазму с наблюдаемой скоростью.

    Как правило, расхождение хромосом в анафазе состоит из двух относительно независимых процессов называемых анафазой А и анафазой В.

    Анафаза А характеризуется расхождением сестринских хроматид к противоположным полюсам деления клетки. За их движение при этом отвечают те же силы, что ранее удерживали хромосомы в плоскости метафазной пластинки. Процесс расхождения хроматид сопровождается сокращением длины деполимеризующихся кинетохорных микротрубочек. Причем их распад наблюдается преимущественно в области кинетохоров, со стороны плюс-концов. Вероятно, деполимеризация микротрубочек у кинетохоров либо в области полюсов деления является необходимым условием для перемещения сестринских хроматид, так как их движение прекращается при добавлении таксола или тяжёлой воды, оказывающих стабилизирующее воздействие на микротрубочки. Механизм, лежащий в основе расхождения хромосом в анафазе А, пока остается неизвестным.

    Во время анафазы В расходятся сами полюса деления клетки, и, в отличии от анафазы А, данный процесс происходит за счёт сборки полюсных микротрубочек со стороны плюс-концов. Полимеризующиеся антипараллельные нити веретена при взаимодействии отчасти и создают расталкивающее полюса усилие. Величина относительного перемещения полюсов при этом, также как и степень перекрывания полюсных микротрубочек в экваториальной зоне клетки сильно варьирует у особей разных видов. Помимо расталкивающих сил, на полюса деления воздействуют тянущие силы со стороны астральных микротрубочек, которые создаются в результате взаимодействия с динеино-подобными белками на плазматической мембране клетки.

    Последовательность, продолжительность и относительный вклад каждого из двух процессов, слагающих анафазу, могут быть крайне различны. Так в клетках млекопитающих анафаза В начинается сразу вслед за началом расхождения хроматид к противоположным полюсам и продолжается вплоть до удлинения митотического веретена в 1,5-2 раза по сравнению с метафазным. В некоторых других клетках анафаза В начинается только после того как хроматиды достигают полюсов деления. У некоторых простейших в процессе анафазы В веретено удлиняется в 15 раз по сравнению с метафазным. В растительных клетках анафаза В отсутствует.

    Телофаза

    Телофаза

    Телофаза рассматривается как заключительная стадия митоза; за её начало принимается момент остановки разделённых сестринских хроматид у противоположных полюсов деления клетки. В ранней телофазе наблюдается деконденсация хромосом и, следовательно, увеличение их в объёме. Вблизи сгруппированных индивидуальных хромосом начинается слияние мембранных пузырьков, что дает начало реконструкции ядерной оболочки. Материалом для построения мембран новообразованных дочерних ядер служат фрагменты изначально распавшейся ядерной мембраны материнской клетки, а также элементы эндоплазматического ретикулума. При этом отдельные пузырьки связываются с поверхностью хромосом и сливаются воедино. Постепенно восстанавливается наружная и внутренняя ядерные мембраны, восстанавливаются ядерная ламина и ядерные поры. В процессе восстановления ядерной оболочки дискретные мембранные пузырьки, вероятно, соединяются с поверхностью хромосом без распознавания специфических последовательностей нуклеотидов, так как в результате проведенных экспериментов было выявлено, что восстановление ядерной мембраны происходит вокруг молекул ДНК, заимствованных у любого организма, даже у бактериального вируса. Внутри заново сформировавшихся клеточных ядер хроматин переходит в дисперсное состояние, возобновляется синтез РНК, и становятся различимыми ядрышки.

    Параллельно с процессами образования ядер дочерних клеток в телофазе начинается и заканчивается разборка микротрубочек веретена деления. Деполимеризация протекает в направлении от полюсов деления к экваториальной плоскости клетки, от минус-концов к плюс-концам. При этом дольше всего сохраняются микротрубочки в средней части веретена деления, которые образуют остаточное тельце Флеминга.

    Окончание телофазы преимущественно совпадает с разделением тела материнской клетки — цитокинезом. При этом образуются две или более дочерние клетки. Процессы, ведущие к разделению цитоплазмы, берут свое начало еще в середине анафазы и могут продолжаться после завершения телофазы. Митоз не всегда сопровождается разделением цитоплазмы, поэтому цитокинез не классифицируется в качестве отдельной фазы митотического деления и обычно рассматривается в составе телофазы.

    Различают два основных типа цитокинеза: деление поперечной перетяжкой клетки и деление путём образования клеточной пластинки. Плоскость деления клетки детерминируется положением митотического веретена и проходит под прямым углом к длинной оси веретена.

    При делении поперечной перетяжкой клетки место разделения цитоплазмы закладывается предварительно ещё в период анафазы, когда в плоскости метафазной пластинки под мембраной клетки возникает сократимое кольцо из актиновых и миозиновых филаментов. В дальнейшем, вследствие активности сократимого кольца, образуется борозда деления, которая постепенно углубляется вплоть до полного разделения клетки. По окончании цитокинеза сократимое кольцо полностью распадается, а плазматическая мембрана стягивается вокруг остаточного тельца Флеминга, состоящего из скопления остатков двух групп полюсных микротрубочек, тесно упакованных вместе с материалом плотного матрикса.

    Деление путём образования клеточной пластинки начинается с перемещения мелких ограниченных мембраной пузырьков по направлению к экваториальной плоскости клетки. Здесь они сливаются, образуя дисковидную, окружённую мембраной структуру — раннюю клеточную пластинку. Мелкие пузырьки происходят в основном из аппарата Гольджи и перемещаются к экваториальной плоскости вдоль остаточных полюсных микротрубочек веретена деления, образующих цилиндрическую структуру, называемую фрагмопластом. По мере расширения клеточной пластинки микротрубочки раннего фрагмопласта попутно перемещаются к периферии клетки, где за счёт новых мембранных пузырьков продолжается рост клеточной пластинки вплоть до её окончательного слияния с мембраной материнской клетки. После окончательного разделения дочерних клеток в клеточной пластинке откладываются микрофибриллы целлюлозы, завершая образование жёсткой клеточной стенки.

    Прево, Жан-Луи

    Клетка размножается путем деления. Существуют два способа деления: митоз и мейоз.

    Митоз (от греч. митос - нитка), или непрямое деление клетки, представляет собой непрерывный процесс, в результате которого происходит сначала удвоение, а затем равномерное распределение наследственного материала, содержащегося в хромосомах, между двумя образующимися клетками. В этом его биологическое значение. Деление ядра влечет за собой деление всей клетки. Этот процесс называется цитокинезом (от греч. цитос - клетка).

    Состояние клетки между двумя митозами называют интерфазой, или интеркинезом, а все происходящие в ней во время подготовки к митозу и в период деления изменения - митотическим, или клеточным, циклом.

    У разных клеток митотические циклы имеют разную продолжительность. Большую часть времени клетка находится в состоянии интеркинеза, митоз длится сравнительно недолго. В общем митотическом цикле собственно митоз занимает 1/25-1/20 времени, и у большинства клеток он продолжается от 0,5 до 2 ч.

    Толщина хромосом столь мала, что при рассмотрении интерфазного ядра в световой микроскоп они не видны, удается лишь различить гранулы хроматина в узлах их скручивания. Электронный микроскоп позволил обнаруживать хромосомы и в неделящемся ядре, хотя они в это время очень длинны и состоят из двух нитей хроматид, диаметр каждой из которых составляет всего 0,01 мкм. Следовательно, хромосомы в ядре не исчезают, а принимают форму длинных и тонких нитей, которые почти не видны.

    Во время митоза ядро проходит четыре последовательные фазы: профазу, метафазу, анафазу и телофазу.

    Профаза (от греч. про - раньше, фазис - проявление). Это первая фаза деления ядра, во время которой внутри ядра появляются структурные элементы, имеющие вид тонких двойных нитей, что и обусловило название этого типа деления - митоз. В результате спирализации хромонем хромосомы в профазе уплотняются, укорачиваются и становятся отчетливо видимыми. К концу профазы можно хорошо наблюдать, что каждая хромосома состоит из двух тесно соприкасающихся одна с другой хроматид. В дальнейшем обе хроматиды соединяются общим участком - центромерой и начинают постепенно передвигаться к клеточному экватору.

    В середине или в конце профазы ядерная оболочка и ядрышки исчезают, центриоли удваиваются и отходят к полюсам. Из материала цитоплазмы и ядра начинает формироваться веретено деления. Оно состоит из двух видов нитей: опорных и тянущих (хромосомных). Опорные нити составляют основу веретена, они тянутся от одного полюса клетки к другому. Тянущие нити соединяют центромеры хроматид с полюсами клетки и обеспечивают в последующем движение к ним хромосом. Митотический аппарат клетки очень чувствителен к различным внешним воздействиям. При действии радиации, химических веществ и высокой температуры клеточное веретено может разрушаться, возникают всевозможные неправильности в делении клетки.

    Метафаза (от греч. мета - после, фазис - проявление). В метафазе хромосомы сильно уплотняются и приобретают определенную, характерную для данного вида форму. Дочерние хроматиды в каждой паре разъединены хорошо видимой продольной щелью. Большинство хромосом становится двуплечими. Местом перегиба - центромерой - они прикрепляются к нити веретена. Все хромосомы располагаются в экваториальной плоскости клетки, свободные концы их направлены к центру клетки. В это время хромосомы лучше всего наблюдать и подсчитывать. Очень отчетливо видно и клеточное веретено.

    Анафаза (от греч. ана - вверх, фазис - проявление). В анафазе вслед за делением центромер начинается расхождение хроматид, ставших теперь отдельными хромосомами, к противоположным полюсам. При этом хромосомы имеют вид разнообразных крючков, обращенных своими концами к центру клетки. Так как из каждой хромосомы возникли две совершенно одинаковые хроматиды, то в обеих образовавшихся дочерних клетках число хромосом будет равно диплоидному числу исходной материнской клетки.

    Процесс деления центромер и движения к разным полюсам всех вновь образовавшихся парных хромосом отличается исключительной синхронностью.

    В конце анафазы начинается раскручивание хромонемных нитей, и хромосомы, отошедшие к полюсам, видны уже не так четко.

    Телофаза (от греч. телос - конец, фазис - проявление). В телофазе продолжается деспирализация хромосомных нитей, и хромосомы постепенно становятся более тонкими и длинными, приближаясь к тому состоянию, в котором они были в профазе. Вокруг каждой группы хромосом образуется ядерная оболочка, формируется ядрышко. В это же время завершается деление цитоплазмы и возникает клеточная перегородка. Обе новые дочерние клетки вступают в период интерфазы.

    Весь процесс митоза, как уже отмечалось, занимает не более 2 ч. Продолжительность его зависит от вида и возраста клеток, а также от внешних условий, в которых они находятся (температура, освещенность, влажность воздуха и т. д.). Отрицательно сказываются на нормальном ходе деления клеток высокие температуры, радиация, различные наркотики и растительные яды (колхицин, аценафтен и др.).

    Митотическое деление клеток отличается высокой степенью точности и совершенства. Механизм митоза создавался и совершенствовался на протяжении многих миллионов лет эволюционного развития организмов. В митозе находит свое проявление одно из важнейших свойств клетки как самоуправляемой и, самовоспроизводящейся живой биологической системы.

    Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .



    Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.