İkinci Dereceden Denklemler 9. İkinci Dereceden Denklemler

Bu matematik programıyla şunları yapabilirsiniz: ikinci dereceden denklemi çöz.

Program sadece sorunun cevabını vermekle kalmıyor, aynı zamanda çözüm sürecini de iki şekilde gösteriyor:
- diskriminant kullanmak
- Vieta teoremini kullanarak (mümkünse).

Üstelik cevap yaklaşık olarak değil kesin olarak görüntülenir.
Örneğin, \(81x^2-16x-1=0\) denklemi için cevap aşağıdaki biçimde görüntülenir:

$$ x_1 = \frac(8+\sqrt(145))(81), \quad x_2 = \frac(8-\sqrt(145))(81) $$ ve şu şekilde değil: \(x_1 = 0,247; \quad x_2 = -0,05\)

Bu program lise öğrencileri için yararlı olabilir orta okul hazırlık aşamasında testler ve sınavlar, Birleşik Devlet Sınavından önce bilgiyi test ederken, ebeveynlerin matematik ve cebirdeki birçok problemin çözümünü kontrol etmeleri için. Ya da belki bir öğretmen tutmak ya da yeni ders kitapları satın almak sizin için çok mu pahalı? Yoksa mümkün olan en kısa sürede halletmek mi istiyorsunuz? Ev ödevi matematikte mi yoksa cebirde mi? Bu durumda detaylı çözümlere sahip programlarımızı da kullanabilirsiniz.

Bu sayede hem kendi eğitiminizi hem de küçük kardeşlerinizin eğitimini yürütebilir, sorun çözme alanındaki eğitim düzeyi de artar.

İkinci dereceden polinom girme kurallarına aşina değilseniz, bunları öğrenmenizi öneririz.

İkinci dereceden polinom girme kuralları

Herhangi bir Latin harfi değişken görevi görebilir.
Örneğin: \(x, y, z, a, b, c, o, p, q\), vb.

Sayılar tam veya kesirli sayı olarak girilebilir.
Üstelik kesirli sayılar yalnızca ondalık sayı biçiminde değil aynı zamanda sıradan kesir biçiminde de girilebilir.

Ondalık kesirleri girme kuralları.
Ondalık kesirlerde kesirli kısım bütün kısımdan nokta veya virgülle ayrılabilir.
Örneğin, girebilirsiniz ondalık sayılarşu şekilde: 2,5x - 3,5x^2

Sıradan kesirleri girme kuralları.
Yalnızca bir tam sayı bir kesrin pay, payda ve tam sayı kısmı olarak işlev görebilir.

Payda negatif olamaz.

Sayısal bir kesir girerken pay, paydadan bir bölme işaretiyle ayrılır: /
Parçanın tamamı kesirden ve işaretiyle ayrılır: &
Giriş: 3&1/3 - 5&6/5z +1/7z^2
Sonuç: \(3\frac(1)(3) - 5\frac(6)(5) z + \frac(1)(7)z^2\)

Bir ifade girerken parantez kullanabilirsiniz. Bu durumda, ikinci dereceden bir denklemi çözerken, tanıtılan ifade ilk önce basitleştirilir.
Örneğin: 1/2(y-1)(y+1)-(5y-10&1/2)


=0
Karar vermek

Bu sorunu çözmek için gerekli olan bazı scriptlerin yüklenmediği ve programın çalışmayabileceği tespit edildi.
AdBlock'u etkinleştirmiş olabilirsiniz.
Bu durumda devre dışı bırakın ve sayfayı yenileyin.

Tarayıcınızda JavaScript devre dışı bırakıldı.
Çözümün görünmesi için JavaScript'i etkinleştirmeniz gerekir.
Tarayıcınızda JavaScript'i nasıl etkinleştireceğinize ilişkin talimatları burada bulabilirsiniz.

Çünkü Sorunu çözmek isteyen çok kişi var, talebiniz sıraya alındı.
Birkaç saniye içinde çözüm aşağıda görünecektir.
Lütfen bekleyin saniye...


Eğer sen çözümde bir hata fark ettim, ardından Geri Bildirim Formu'na bu konuda yazabilirsiniz.
Unutma hangi görevi belirtin ne olduğuna sen karar ver alanlara girin.



Oyunlarımız, bulmacalarımız, emülatörlerimiz:

Küçük bir teori.

İkinci dereceden denklem ve kökleri. Tamamlanmamış ikinci dereceden denklemler

Denklemlerin her biri
\(-x^2+6x+1,4=0, \quad 8x^2-7x=0, \quad x^2-\frac(4)(9)=0 \)
benziyor
\(ax^2+bx+c=0, \)
burada x bir değişkendir, a, b ve c sayılardır.
Birinci denklemde a = -1, b = 6 ve c = 1,4, ikincisinde a = 8, b = -7 ve c = 0, üçüncüsünde ise a = 1, b = 0 ve c = 4/9 bulunmaktadır. Bu tür denklemlere denir ikinci dereceden denklemler.

Tanım.
İkinci dereceden denklem ax 2 +bx+c=0 biçiminde bir denklem denir; burada x bir değişkendir, a, b ve c bazı sayılardır ve \(a \neq 0 \).

a, b ve c sayıları ikinci dereceden denklemin katsayılarıdır. A sayısına birinci katsayı, b sayısına ikinci katsayı, c sayısına ise serbest terim denir.

ax 2 +bx+c=0 formundaki denklemlerin her birinde (burada \(a\neq 0\), x değişkeninin en büyük kuvveti bir karedir. Bu nedenle adı: ikinci dereceden denklem.

İkinci dereceden bir denklemin ikinci dereceden bir denklem olarak da adlandırıldığını unutmayın, çünkü sol tarafı ikinci dereceden bir polinomdur.

x 2 katsayısının 1'e eşit olduğu ikinci dereceden denklem denir verilen ikinci dereceden denklem. Örneğin, verilen ikinci dereceden denklemler denklemlerdir
\(x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

İkinci dereceden bir denklemde ax 2 +bx+c=0 b veya c katsayılarından en az biri sıfıra eşitse, böyle bir denklem denir tamamlanmamış ikinci dereceden denklem. Dolayısıyla -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 denklemleri tamamlanmamış ikinci dereceden denklemlerdir. Bunlardan ilkinde b=0, ikincisinde c=0, üçüncüsünde b=0 ve c=0 olur.

Üç tür tamamlanmamış ikinci dereceden denklem vardır:
1) ax 2 +c=0, burada \(c \neq 0 \);
2) ax 2 +bx=0, burada \(b \neq 0 \);
3) balta 2 =0.

Bu türlerin her birinin denklemlerini çözmeyi düşünelim.

\(c \neq 0\ için) ax 2 +c=0 formundaki tamamlanmamış ikinci dereceden bir denklemi çözmek için, serbest terimi şu şekilde aktarılır: Sağ Taraf ve denklemin her iki tarafını a'ya bölün:
\(x^2 = -\frac(c)(a) \Rightarrow x_(1,2) = \pm \sqrt( -\frac(c)(a)) \)

\(c \neq 0 \) olduğundan \(-\frac(c)(a) \neq 0 \)

Eğer \(-\frac(c)(a)>0\), o zaman denklemin iki kökü vardır.

Eğer \(-\frac(c)(a) ax 2 +bx=0 formundaki tamamlanmamış ikinci dereceden bir denklemi \(b \neq 0 \) ile çözmek için genişletin Sol Taraf faktörlere göre ve denklemi elde edin
\(x(ax+b)=0 \Rightarrow \left\( \begin(array)(l) x=0 \\ ax+b=0 \end(array) \right. \Rightarrow \left\( \begin (array)(l) x=0 \\ x=-\frac(b)(a) \end(array) \right.\)

Bu, \(b \neq 0 \) için ax 2 +bx=0 formundaki tamamlanmamış ikinci dereceden bir denklemin her zaman iki kökü olduğu anlamına gelir.

ax 2 =0 formundaki tamamlanmamış bir ikinci dereceden denklem, x 2 =0 denklemine eşdeğerdir ve bu nedenle tek bir kökü 0'dır.

İkinci dereceden bir denklemin kökleri için formül

Şimdi hem bilinmeyenlerin katsayıları hem de serbest terimin sıfırdan farklı olduğu ikinci dereceden denklemlerin nasıl çözüleceğine bakalım.

İkinci dereceden denklemi çözelim Genel görünüm ve sonuç olarak köklerin formülünü elde ederiz. Bu formül daha sonra herhangi bir ikinci dereceden denklemi çözmek için kullanılabilir.

İkinci dereceden denklemi çözün ax 2 +bx+c=0

Her iki tarafı a'ya bölerek eşdeğer indirgenmiş ikinci dereceden denklemi elde ederiz
\(x^2+\frac(b)(a)x +\frac(c)(a)=0 \)

Binomun karesini seçerek bu denklemi dönüştürelim:
\(x^2+2x \cdot \frac(b)(2a)+\left(\frac(b)(2a)\right)^2- \left(\frac(b)(2a)\right)^ 2 + \frac(c)(a) = 0 \Rightarrow \)

\(x^2+2x \cdot \frac(b)(2a)+\left(\frac(b)(2a)\right)^2 = \left(\frac(b)(2a)\right)^ 2 - \frac(c)(a) \Rightarrow \) \(\left(x+\frac(b)(2a)\right)^2 = \frac(b^2)(4a^2) - \frac( c)(a) \Rightarrow \left(x+\frac(b)(2a)\right)^2 = \frac(b^2-4ac)(4a^2) \Rightarrow \) \(x+\frac(b) )(2a) = \pm \sqrt( \frac(b^2-4ac)(4a^2) ) \Rightarrow x = -\frac(b)(2a) + \frac( \pm \sqrt(b^2) -4ac) )(2a) \Rightarrow \) \(x = \frac( -b \pm \sqrt(b^2-4ac) )(2a) \)

Radikal ifade denir ikinci dereceden bir denklemin diskriminantı ax 2 +bx+c=0 (Latince'de “ayırıcı” - ayrımcı) D harfiyle belirtilir, yani.
\(D = b^2-4ac\)

Şimdi diskriminant gösterimini kullanarak ikinci dereceden denklemin köklerinin formülünü yeniden yazıyoruz:
\(x_(1,2) = \frac( -b \pm \sqrt(D) )(2a) \), burada \(D= b^2-4ac \)

Şu açıktır:
1) D>0 ise ikinci dereceden denklemin iki kökü vardır.
2) Eğer D=0 ise ikinci dereceden denklemin bir kökü vardır \(x=-\frac(b)(2a)\).
3) Eğer D Dolayısıyla, diskriminantın değerine bağlı olarak, ikinci dereceden bir denklemin iki kökü olabilir (D > 0 için), bir kökü olabilir (D = 0 için) veya hiç kökü olmayabilir (D için) Bunu kullanarak ikinci dereceden bir denklemi çözerken formülü aşağıdaki şekilde yapmanız önerilir:
1) diskriminantı hesaplayın ve sıfırla karşılaştırın;
2) Diskriminant pozitif veya sıfıra eşitse kök formülünü kullanın; diskriminant negatifse kök olmadığını yazın.

Vieta'nın teoremi

Verilen ikinci dereceden ax 2 -7x+10=0 denkleminin kökleri 2 ve 5'tir. Köklerin toplamı 7, çarpımı ise 10'dur. Köklerin toplamının tersi ile alınan ikinci katsayıya eşit olduğunu görüyoruz. işareti ve köklerin çarpımı serbest terime eşittir. Kökleri olan herhangi bir indirgenmiş ikinci dereceden denklem bu özelliğe sahiptir.

Yukarıdaki ikinci dereceden denklemin köklerinin toplamı, ters işaretli ikinci katsayıya, köklerin çarpımı ise serbest terime eşittir.

Onlar. Vieta teoremi, indirgenmiş ikinci dereceden denklem x 2 +px+q=0'ın kökleri x 1 ve x 2'nin şu özelliğe sahip olduğunu belirtir:
\(\left\( \begin(array)(l) x_1+x_2=-p \\ x_1 \cdot x_2=q \end(array) \right. \)

Hadi birlikte çalışalım ikinci dereceden denklemler. Bunlar çok popüler denklemler! En genel haliyle ikinci dereceden bir denklem şuna benzer:

Örneğin:

Burada A =1; B = 3; C = -4

Burada A =2; B = -0,5; C = 2,2

Burada A =-3; B = 6; C = -18

Peki, anlıyorsun...

İkinci dereceden denklemler nasıl çözülür?Önünüzde bu formda ikinci dereceden bir denklem varsa, o zaman her şey basittir. Sihirli kelimeyi hatırla ayrımcı . Nadiren bir lise öğrencisi bu kelimeyi duymamıştır! “Ayrımcı aracılığıyla çözüyoruz” ifadesi güven ve güvence veriyor. Çünkü ayrımcıdan hile beklemeye gerek yok! Kullanımı basit ve sorunsuzdur. Yani ikinci dereceden bir denklemin köklerini bulma formülü şöyle görünür:

Kök işaretinin altındaki ifade ayrımcı. Gördüğünüz gibi X'i bulmak için şunu kullanıyoruz: sadece a, b ve c. Onlar. ikinci dereceden bir denklemin katsayıları. Değerleri dikkatlice değiştirin a, b ve c Hesapladığımız formül bu. Hadi değiştirelim kendi işaretlerinle! Örneğin, ilk denklem için A =1; B = 3; C= -4. İşte bunu yazıyoruz:

Örnek neredeyse çözüldü:

Bu kadar.

Bu formülü kullanırken hangi durumlar mümkündür? Sadece üç vaka var.

1. Diskriminant pozitiftir. Bu, kökün ondan çıkarılabileceği anlamına gelir. Kökün iyi mi yoksa kötü mü çıkarıldığı başka bir sorudur. Önemli olan prensipte neyin çıkarıldığıdır. O halde ikinci dereceden denkleminizin iki kökü vardır. İki farklı çözüm.

2. Diskriminant sıfırdır. O zaman tek bir çözümünüz var. Aslına bakılırsa bu tek bir kök değil, iki özdeş. Ancak bu, konuyu daha ayrıntılı olarak inceleyeceğimiz eşitsizliklerde rol oynuyor.

3. Diskriminant negatiftir. Negatif bir sayıdan Kare kökçıkarılmadı. İyi tamam. Bu, hiçbir çözümün olmadığı anlamına gelir.

Her şey çok basit. Peki hata yapmanın imkansız olduğunu mu düşünüyorsun? Evet, nasıl...
En yaygın hatalar işaret değerleriyle karışıklıktır a, b ve c. Daha doğrusu, işaretleriyle değil (nerede karıştırılmalı?), Kökleri hesaplama formülüne negatif değerlerin eklenmesiyle. Burada yardımcı olan, formülün belirli sayılarla ayrıntılı bir şekilde kaydedilmesidir. Hesaplamalarda sorun varsa, yap bunu!



Aşağıdaki örneği çözmemiz gerektiğini varsayalım:

Burada bir = -6; b = -5; c = -1

Diyelim ki ilk seferde nadiren yanıt alabildiğinizi biliyorsunuz.

Tembel olmayın. Fazladan bir satır yazmak yaklaşık 30 saniye sürecektir ve hata sayısı keskin bir şekilde azalacak. Bu yüzden tüm parantez ve işaretlerle birlikte ayrıntılı olarak yazıyoruz:

Bu kadar dikkatli yazmak inanılmaz derecede zor görünüyor. Ama sadece öyle görünüyor. Bir şans ver. Peki ya da seç. Hangisi daha iyi, hızlı mı yoksa doğru mu? Üstelik seni mutlu edeceğim. Bir süre sonra her şeyi bu kadar dikkatli yazmaya gerek kalmayacak. Kendi kendine düzelecektir. Özellikle aşağıda açıklanan pratik teknikleri kullanıyorsanız. Pek çok eksiği olan bu kötü örnek, kolayca ve hatasız çözülebilir!

Bu yüzden, ikinci dereceden denklemler nasıl çözülür hatırladığımız diskriminant aracılığıyla. Veya öğrendiler ki bu da iyi. Nasıl doğru bir şekilde belirleneceğini biliyorsun a, b ve c. Nasıl olduğunu biliyor musun? dikkatle bunları kök formülde değiştirin ve dikkatle sonucu sayın. Buradaki anahtar kelimenin şu olduğunu anlıyorsunuz: dikkatle mi?

Ancak ikinci dereceden denklemler genellikle biraz farklı görünür. Örneğin şöyle:

Bu tamamlanmamış ikinci dereceden denklemler . Ayrıca diskriminantla da çözülebilirler. Sadece burada neye eşit olduklarını doğru anlamanız gerekiyor. a, b ve c.

Anladın mı? İlk örnekte bir = 1; b = -4; A C? Hiç orada değil! Evet, doğru. Matematikte bu şu anlama gelir: c = 0 ! Bu kadar. Bunun yerine formülde sıfırı değiştirin C, ve başaracağız. İkinci örnekle aynı. Yalnız burada sıfır yok İle, A B !

Ancak tamamlanmamış ikinci dereceden denklemler çok daha basit bir şekilde çözülebilir. Hiçbir ayrım yapmadan. İlk tamamlanmamış denklemi ele alalım. Sol tarafta ne yapabilirsiniz? X'i parantezlerden çıkarabilirsiniz! Hadi çıkaralım.

Peki bundan ne haber? Ve çarpımın sıfıra eşit olması ancak ve ancak faktörlerden herhangi birinin sıfıra eşit olması durumunda! Bana inanmıyor musun? Tamam, o zaman çarpıldığında sıfır verecek iki sıfır olmayan sayı bulun!
Çalışmıyor? Bu kadar...
Bu nedenle güvenle yazabiliriz: x = 0, veya x = 4

Tüm. Bunlar denklemimizin kökleri olacak. Her ikisi de uygundur. Bunlardan herhangi birini orijinal denklemde yerine koyduğumuzda doğru özdeşliği 0 = 0 elde ederiz. Gördüğünüz gibi çözüm, diskriminant kullanmaktan çok daha basittir.

İkinci denklem de basit bir şekilde çözülebilir. 9'u sağ tarafa taşıyın. Şunu elde ederiz:

Geriye kalan tek şey 9'dan kökü çıkarmak, hepsi bu. Ortaya çıkacak:

Ayrıca iki kök . x = +3 ve x = -3.

Tüm tamamlanmamış ikinci dereceden denklemler bu şekilde çözülür. Ya X'i parantezlerin dışına yerleştirerek ya da sayıyı sağa taşıyıp ardından kökü çıkartarak.
Bu teknikleri karıştırmak son derece zordur. Basitçe, çünkü ilk durumda X'in kökünü çıkarmak zorunda kalacaksınız ki bu bir şekilde anlaşılmazdır ve ikinci durumda parantez içinde çıkarılacak hiçbir şey yoktur...

Şimdi hata sayısını önemli ölçüde azaltan pratik teknikleri not edin. Dikkatsizlikten kaynaklananların aynısı... Daha sonra acı verici ve rencide edici hale gelenler...

İlk randevu. İkinci dereceden bir denklemi çözmeden önce tembel olmayın ve onu standart görünüm. Bu ne anlama gelir?
Diyelim ki tüm dönüşümlerden sonra aşağıdaki denklemi elde ettiniz:

Kök formülünü yazmak için acele etmeyin! Neredeyse kesinlikle oranları karıştıracaksınız a, b ve c.Örneği doğru şekilde oluşturun. Önce X'in karesi, sonra karesiz, sonra da serbest terim. Bunun gibi:

Ve yine acele etmeyin! X karesinin önündeki eksi sizi gerçekten üzebilir. Unutmak kolaydır... Eksilerden kurtulun. Nasıl? Evet, önceki konuda öğretildiği gibi! Denklemin tamamını -1 ile çarpmamız gerekiyor. Şunu elde ederiz:

Ancak artık köklerin formülünü güvenle yazabilir, diskriminantı hesaplayabilir ve örneği çözmeyi tamamlayabilirsiniz. Kendin için karar ver. Artık 2 ve -1 köklerine sahip olmalısınız.

Resepsiyon ikinci. Kökleri kontrol edin! Vieta teoremine göre. Korkma, her şeyi açıklayacağım! Kontrol etme son şey denklem. Onlar. kök formülü yazarken kullandığımız formül. Eğer (bu örnekte olduğu gibi) katsayı bir = 1, kökleri kontrol etmek kolaydır. Bunları çoğaltmak yeterlidir. Sonuç ücretsiz bir üye olmalıdır, yani. bizim durumumuzda -2. Lütfen dikkat, 2 değil, -2! Ücretsiz Üye senin burcunla . Eğer işe yaramazsa, bu zaten bir yerlerde işleri berbat ettikleri anlamına gelir. Hatayı arayın. İşe yararsa kökleri eklemeniz gerekir. Son ve son kontrol. Katsayı şu şekilde olmalıdır: Bİle zıt aşina. Bizim durumumuzda -1+2 = +1. bir katsayı B X'ten önce gelen -1'e eşittir. Yani her şey doğru!
Bunun yalnızca x karenin saf olduğu ve katsayılı olduğu örnekler için bu kadar basit olması üzücü bir = 1. Ama en azından bu tür denklemleri kontrol edin! Gittikçe daha az hata olacak.

Üçüncü resepsiyon. Denkleminizin kesirli katsayıları varsa kesirlerden kurtulun! Denklemi önceki bölümde anlatıldığı gibi ortak bir paydayla çarpın. Kesirlerle çalışırken bazı nedenlerden dolayı hatalar ortaya çıkmaya devam ediyor...

Bu arada, kötü örneği bir sürü eksiyle basitleştireceğime söz verdim. Lütfen! İşte burada.

Eksilerle karıştırılmamak için denklemi -1 ile çarpıyoruz. Şunu elde ederiz:

Bu kadar! Çözmek bir zevktir!

O halde konuyu özetleyelim.

Pratik tavsiye:

1. Çözmeden önce ikinci dereceden denklemi standart forma getirip oluşturuyoruz Sağ.

2. X karenin önünde negatif bir katsayı varsa denklemin tamamını -1 ile çarparak onu ortadan kaldırırız.

3. Katsayılar kesirli ise denklemin tamamını karşılık gelen faktörle çarparak kesirleri ortadan kaldırırız.

4. Eğer x kare safsa katsayısı bire eşitse çözüm Vieta teoremi kullanılarak kolayca doğrulanabilir. Yap!

Kesirli denklemler. ODZ.

Denklemlere hakim olmaya devam ediyoruz. Doğrusal ve ikinci dereceden denklemlerle nasıl çalışılacağını zaten biliyoruz. Geriye kalan son görünüm - kesirli denklemler. Veya çok daha saygın bir şekilde çağrılırlar - kesirli rasyonel denklemler. Bu aynı.

Kesirli denklemler.

Adından da anlaşılacağı gibi bu denklemlerin mutlaka kesirler içermesi gerekir. Ama sadece kesirler değil, aynı zamanda sahip olan kesirler paydada bilinmiyor. En azından birinde. Örneğin:

Size şunu hatırlatmama izin verin, eğer paydalar sadece sayılar bunlar doğrusal denklemlerdir.

Nasıl karar verilir? kesirli denklemler? Öncelikle kesirlerden kurtulun! Bundan sonra denklem çoğunlukla doğrusal veya ikinci dereceden hale gelir. Sonra da ne yapacağımızı biliyoruz... Bazı durumlarda 5=5 gibi bir özdeşliğe veya 7=2 gibi yanlış bir ifadeye dönüşebiliyor. Ancak bu nadiren olur. Aşağıda buna değineceğim.

Ama kesirlerden nasıl kurtuluruz!? Çok basit. Aynı özdeş dönüşümlerin uygulanması.

Denklemin tamamını aynı ifadeyle çarpmamız gerekiyor. Böylece tüm paydalar azaltılır! Her şey hemen kolaylaşacak. Bir örnekle açıklayayım. Denklemi çözmemiz gerekiyor:

İlkokulda nasıl eğitildiniz? Her şeyi bir tarafa taşıyoruz, ortak bir paydaya getiriyoruz vb. Kötü bir rüya gibi unut gitsin! Kesirleri eklerken veya çıkarırken yapmanız gereken şey budur. Veya eşitsizliklerle çalışırsınız. Ve denklemlerde, hemen her iki tarafı da bize tüm paydaları azaltma fırsatı verecek bir ifadeyle (yani özünde ortak bir paydayla) çarpıyoruz. Peki bu ifade nedir?

Sol tarafta, paydayı azaltmak için şununla çarpılması gerekir: x+2. Sağda ise 2 ile çarpmak gerekiyor, bu da denklemin şu şekilde çarpılması gerektiği anlamına geliyor: 2(x+2). Çarpmak:

Bu, kesirlerin yaygın bir çarpımıdır, ancak bunu ayrıntılı olarak açıklayacağım:

Braketi henüz açmadığımı lütfen unutmayın (x + 2)! O yüzden tamamını yazıyorum:

Sol tarafta tamamen kasılır (x+2), ve sağda 2. Gereken de buydu! İndirgemeden sonra elde ederiz doğrusal denklem:

Ve herkes bu denklemi çözebilir! x = 2.

Biraz daha karmaşık olan başka bir örneği çözelim:

3 = 3/1 olduğunu hatırlarsak ve 2x = 2x/ 1, şunu yazabiliriz:

Ve yine gerçekten sevmediğimiz şeylerden - kesirlerden - kurtuluyoruz.

Paydayı X ile azaltmak için kesri şununla çarpmamız gerektiğini görüyoruz: (x – 2). Ve birkaçı bizim için engel değil. Peki çarpalım. Tüm sol taraf ve Tümü Sağ Taraf:

Tekrar parantez (x – 2) Açıklamıyorum. Parantezle bir bütün olarak sanki tek bir sayıymış gibi çalışıyorum! Bu her zaman yapılmalıdır, aksi takdirde hiçbir şey azalmayacaktır.

Derin bir tatmin duygusuyla azaltıyoruz (x – 2) ve cetvelle kesir içermeyen bir denklem elde ediyoruz!

Şimdi parantezleri açalım:

Benzerlerini getiriyoruz, her şeyi sol tarafa taşıyoruz ve şunu elde ediyoruz:

Klasik ikinci dereceden denklem. Ancak önümüzdeki eksi iyi değil. Her zaman -1 ile çarparak veya bölerek bundan kurtulabilirsiniz. Ancak örneğe yakından bakarsanız, bu denklemi -2'ye bölmenin en iyisi olduğunu fark edeceksiniz! Bir anda eksi ortadan kaybolacak ve oranlar daha cazip hale gelecek! -2'ye bölün. Sol tarafta - terim terim ve sağda - sıfırı -2'ye (sıfır) bölerseniz şunu elde ederiz:

Diskriminant aracılığıyla çözüyoruz ve Vieta teoremini kullanarak kontrol ediyoruz. Aldık x = 1 ve x = 3. İki kök.

Gördüğünüz gibi ilk durumda dönüşümden sonra denklem doğrusal hale geldi, ancak burada ikinci dereceden hale geliyor. Kesirlerden kurtulduktan sonra tüm X'ler azalır. Geriye 5=5 gibi bir şey kalıyor. Bu demektir x herhangi bir şey olabilir. Ne olursa olsun yine de azalacak. Ve bunun saf gerçek olduğu ortaya çıkıyor: 5=5. Ancak kesirlerden kurtulduktan sonra 2=7 gibi tamamen yanlış olduğu ortaya çıkabilir. Ve bu şu anlama geliyor çözüm yok! Herhangi bir X'in doğru olmadığı ortaya çıkıyor.

Gerçekleştirilmiş ana yolçözümler kesirli denklemler ? Basit ve mantıklıdır. Hoşumuza gitmeyen her şeyin kaybolması için orijinal ifadeyi değiştiriyoruz. Veya müdahale ediyor. Bu durumda bunlar kesirlerdir. Aynısını her türlü yapacağız karmaşık örnekler logaritmalar, sinüsler ve diğer dehşetlerle. Biz Her zaman Bütün bunlardan kurtulalım.

Ancak orijinal ifadeyi ihtiyacımız olan yönde değiştirmemiz gerekiyor. kurallara göre, evet... Ustalığı matematikte Birleşik Devlet Sınavına hazırlıktır. Yani bunda ustalaşıyoruz.

Şimdi bunlardan birini nasıl atlayacağımızı öğreneceğiz. Birleşik Devlet Sınavında ana pusu! Ama önce bakalım bu duruma düşecek misiniz, düşmeyecek misiniz?

Basit bir örneğe bakalım:

Konu zaten tanıdık, her iki tarafı da çarpıyoruz (x – 2), şunu elde ederiz:

Parantezle hatırlatırım (x – 2) Sanki tek bir bütünsel ifadeyle çalışıyoruz!

Burada artık paydalara bir tane yazmadım, onursuz... Ve paydalara parantez çizmedim, hariç x – 2 hiçbir şey yok, çizmene gerek yok. Kısaltalım:

Parantezleri açın, her şeyi sola taşıyın ve benzerlerini verin:

Çözüyoruz, kontrol ediyoruz, iki kök alıyoruz. x = 2 Ve x = 3. Harika.

Ödevin kökü veya birden fazla kök varsa bunların toplamını yazmanız gerektiğini varsayalım. Ne yazacağız?

Cevabın 5 olduğuna karar verirseniz, pusuya düşürüldü. Ve görev size verilmeyecektir. Boşuna çalıştılar... Doğru cevap 3.

Sorun ne?! Ve bir kontrol yapmaya çalışıyorsun. Bilinmeyenlerin değerlerini yerine koyun orijinalörnek. Ve eğer x = 3 her şey harika bir şekilde birlikte büyüyecek, 9 = 9 elde edeceğiz, o zaman x = 2 Sıfıra bölme olacak! Kesinlikle yapamayacağınız şey. Araç x = 2 bir çözüm değildir ve cevapta dikkate alınmaz. Bu sözde yabancı veya ekstra köktür. Sadece onu atıyoruz. Son kök birdir. x = 3.

Nasıl yani?! – Öfkeli ünlemler duyuyorum. Bize bir denklemin bir ifadeyle çarpılabileceği öğretildi! Bu aynı dönüşüm!

Evet, aynı. Şu tarihte: küçük durum– çarptığımız (böldüğümüz) ifade – sıfırdan farklı. A x – 2 en x = 2 sıfıra eşittir! Yani her şey adil.

Peki şimdi ne yapabilirim? İfadeyle çarpmıyor musunuz? Her seferinde kontrol etmeli miyim? Yine belirsiz!

Sakin ol! Panik yapma!

Bu zor durumda bizi üç sihirli harf kurtaracak. Ne düşündüğünü biliyorum. Sağ! Bu ODZ . Kabul Edilebilir Değerler Alanı.

Daha basit bir şekilde. Bunu yapmak için z'yi parantezlerin dışına çıkarın. Şunu elde edersiniz: z(аz + b) = 0. Her ikisi de sıfırla sonuçlanabileceğinden, çarpanlar şu şekilde yazılabilir: z=0 ve аz + b = 0. az + b = 0 notasyonunda ikinciyi farklı bir işaretle sağa kaydırıyoruz. Buradan z1 = 0 ve z2 = -b/a elde ederiz. Bunlar orijinalin kökleridir.

Az² + c = 0 şeklinde eksik bir denklem varsa, bu durumda serbest terimin denklemin sağ tarafına taşınmasıyla bulunurlar. Ayrıca işaretini de değiştirin. Sonuç az² = -с olacaktır. z² = -c/a'yı ifade edin. Kökü alın ve iki çözümü yazın - pozitif ve negatif karekök.

Not

Denklemde kesirli katsayılar varsa kesirlerden kurtulmak için denklemin tamamını uygun faktörle çarpın.

İkinci dereceden denklemlerin nasıl çözüleceğine dair bilgi hem okul çocukları hem de öğrenciler için gereklidir; bazen bu bir yetişkine de günlük yaşamda yardımcı olabilir. Birkaç özel çözüm yöntemi vardır.

İkinci Dereceden Denklemleri Çözme

a*x^2+b*x+c=0 formundaki ikinci dereceden denklem. Katsayı x istenilen değişkendir, a, b, c ise sayısal katsayılardır. “+” işaretinin “-” işaretine dönüşebileceğini unutmayın.

Bu denklemi çözmek için Vieta teoremini kullanmak veya diskriminantı bulmak gerekir. En yaygın yöntem diskriminantı bulmaktır çünkü a, b, c'nin bazı değerleri için Vieta teoremini kullanmak mümkün değildir.

Diskriminantı (D) bulmak için D=b^2 - 4*a*c formülünü yazmanız gerekir. D değeri sıfırdan büyük, küçük veya sıfıra eşit olabilir. D sıfırdan büyük veya küçükse iki kök olacaktır; D = 0 ise yalnızca bir kök kalacaktır; daha doğrusu bu durumda D'nin iki eşdeğer kökü olduğunu söyleyebiliriz. Bilinen a, b, c katsayılarını formülde yerine koyun ve değeri hesaplayın.

Diskriminantı bulduktan sonra x'i bulmak için formülleri kullanın: x(1) = (- b+sqrt(D))/2*a; x(2) = (- b-sqrt(D))/2*a, burada sqrt, belirli bir sayının karekökünü almak anlamına gelen bir fonksiyondur. Bu ifadeleri hesapladıktan sonra denkleminizin iki kökünü bulacaksınız, bundan sonra denklem çözülmüş sayılır.

D sıfırdan küçükse hala kökleri vardır. Bu bölüm pratik olarak okulda çalışılmamaktadır. Üniversite öğrencileri kökün altında negatif bir sayının göründüğünün farkında olmalıdır. Hayali kısmı vurgulayarak bundan kurtulurlar, yani kökün altındaki -1 her zaman aynı pozitif sayı ile kök ile çarpılan hayali eleman “i”ye eşittir. Örneğin, eğer D=sqrt(-20) ise, dönüşümden sonra D=sqrt(20)*i elde ederiz. Bu dönüşümden sonra denklemin çözümü yukarıda anlatıldığı gibi aynı kök bulma işlemine indirgenir.

Vieta teoremi x(1) ve x(2) değerlerinin seçilmesinden oluşur. İki özdeş denklem kullanılır: x(1) + x(2)= -b; x(1)*x(2)=с. Ve çok önemli nokta b katsayısının önündeki işarettir, bu işaretin denklemdeki işaretin tersi olduğunu unutmayın. İlk bakışta x(1) ve x(2)'yi hesaplamak çok basit gibi görünse de çözerken sayıları seçmeniz gerektiği gerçeğiyle karşı karşıya kalacaksınız.

İkinci dereceden denklemleri çözmenin unsurları

Matematik kurallarına göre bazıları çarpanlara ayrılabilir: (a+x(1))*(b-x(2))=0, eğer bu ikinci dereceden denklemi matematik formüllerini kullanarak benzer şekilde dönüştürmeyi başardıysanız, o zaman çekinmeyin cevabını yaz. x(1) ve x(2) parantez içindeki bitişik katsayılara eşit ancak ters işaretli olacaktır.

Ayrıca tamamlanmamış ikinci dereceden denklemleri de unutmayın. Bazı terimleri kaçırıyor olabilirsiniz; eğer öyleyse, o zaman tüm katsayılar sıfıra eşittir. Eğer x^2 veya x'in önünde hiçbir şey yoksa a ve b katsayıları 1'e eşittir.

Umarım bu makaleyi inceledikten sonra ikinci dereceden tam bir denklemin köklerini nasıl bulacağınızı öğreneceksiniz.

Diskriminant kullanılarak yalnızca tam ikinci dereceden denklemler çözülür; tamamlanmamış ikinci dereceden denklemleri çözmek için, "Eksik ikinci dereceden denklemleri çözme" makalesinde bulacağınız diğer yöntemler kullanılır.

Hangi ikinci dereceden denklemlere tam denir? Bu ax 2 + b x + c = 0 formundaki denklemler a, b ve c katsayılarının sıfıra eşit olmadığı durumda. Dolayısıyla ikinci dereceden bir denklemi tam olarak çözmek için diskriminant D'yi hesaplamamız gerekir.

D = b 2 – 4ac.

Diskriminantın değerine bağlı olarak cevabı yazacağız.

Diskriminant negatif bir sayı ise (D< 0),то корней нет.

Diskriminant sıfır ise x = (-b)/2a olur. Diskriminant pozitif bir sayı olduğunda (D > 0),

bu durumda x 1 = (-b - √D)/2a ve x 2 = (-b + √D)/2a olur.

Örneğin. Denklemi çözün x 2– 4x + 4= 0.

D = 4 2 – 4 4 = 0

x = (- (-4))/2 = 2

Cevap: 2.

Denklem 2'yi Çöz x 2 + x + 3 = 0.

D = 1 2 – 4 2 3 = – 23

Cevap: Kök yok.

Denklem 2'yi Çöz x 2 + 5x – 7 = 0.

D = 5 2 – 4 2 (–7) = 81

x 1 = (-5 - √81)/(2 2)= (-5 - 9)/4= – 3,5

x 2 = (-5 + √81)/(2 2) = (-5 + 9)/4=1

Cevap: – 3.5; 1.

Şimdi Şekil 1'deki diyagramı kullanarak tam ikinci dereceden denklemlerin çözümünü hayal edelim.

Bu formülleri kullanarak herhangi bir tam ikinci dereceden denklemi çözebilirsiniz. Sadece dikkatli olman gerekiyor denklem standart formun bir polinomu olarak yazılmıştır

A x 2 + bx + c, aksi halde hata yapabilirsiniz. Örneğin, x + 3 + 2x 2 = 0 denklemini yazarken yanlışlıkla şuna karar verebilirsiniz:

a = 1, b = 3 ve c = 2. O halde

D = 3 2 – 4 1 2 = 1 ve bu durumda denklemin iki kökü vardır. Ve bu doğru değil. (Yukarıdaki örnek 2'nin çözümüne bakın).

Bu nedenle, eğer denklem standart formda bir polinom olarak yazılmamışsa, öncelikle ikinci dereceden denklemin tamamı standart formda bir polinom olarak yazılmalıdır (en büyük üssü olan monom ilk önce gelmelidir, yani A x 2 , daha azıyla bx ve sonra ücretsiz bir üye İle.

İkinci dereceden ikinci dereceden denklemi ve çift katsayılı ikinci dereceden denklemi çözerken, diğer formülleri kullanabilirsiniz. Gelin bu formülleri tanıyalım. Tam ikinci dereceden bir denklemde ikinci terimin çift katsayısı varsa (b = 2k), o zaman denklemi Şekil 2'deki şemada gösterilen formülleri kullanarak çözebilirsiniz.

Tam bir ikinci dereceden denklem, eğer katsayı x 2 bire eşittir ve denklem şu şekli alır: x 2 + piksel + q = 0. Böyle bir denklem çözüm için verilebileceği gibi denklemin tüm katsayılarının katsayıya bölünmesiyle de elde edilebilir. A, ayakta x 2 .

Şekil 3, indirgenmiş kareyi çözmek için bir diyagramı göstermektedir
denklemler. Bu makalede tartışılan formüllerin uygulanmasına bir örnek verelim.

Örnek. Denklemi çözün

3x 2 + 6x – 6 = 0.

Bu denklemi Şekil 1'deki diyagramda gösterilen formülleri kullanarak çözelim.

D = 6 2 – 4 3 (– 6) = 36 + 72 = 108

√D = √108 = √(36 3) = 6√3

x 1 = (-6 - 6√3)/(2 3) = (6 (-1- √(3))))/6 = –1 – √3

x 2 = (-6 + 6√3)/(2 3) = (6 (-1+ √(3))))/6 = –1 + √3

Cevap: –1 – √3; –1 + √3

Bu denklemde x'in katsayısının çift sayı olduğunu fark edebilirsiniz, yani b = 6 veya b = 2k, dolayısıyla k = 3. O halde denklemi, şekil D'deki diyagramda gösterilen formülleri kullanarak çözmeye çalışalım. 1 = 3 2 – 3 · (– 6) = 9 + 18 = 27

√(D 1) = √27 = √(9 3) = 3√3

x 1 = (-3 - 3√3)/3 = (3 (-1 - √(3)))/3 = – 1 – √3

x 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Cevap: –1 – √3; –1 + √3. Bu ikinci dereceden denklemdeki tüm katsayıların 3'e bölünebilir olduğunu fark edip bölme işlemini gerçekleştirerek indirgenmiş ikinci dereceden denklemi elde ederiz x 2 + 2x – 2 = 0 Bu denklemi indirgenmiş ikinci dereceden denklem formüllerini kullanarak çözün
denklemler şekil 3.

D 2 = 2 2 – 4 (– 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 3) = 2√3

x 1 = (-2 - 2√3)/2 = (2 (-1 - √(3)))/2 = – 1 – √3

x 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Cevap: –1 – √3; –1 + √3.

Gördüğünüz gibi bu denklemi farklı formüller kullanarak çözdüğümüzde aynı cevabı aldık. Bu nedenle, Şekil 1'deki diyagramda gösterilen formüllere tamamen hakim olduğunuzda, her zaman herhangi bir ikinci dereceden denklemi tam olarak çözebileceksiniz.

web sitesi, materyalin tamamını veya bir kısmını kopyalarken kaynağa bir bağlantı gereklidir.

İkinci dereceden denklemler. Ayrımcı. Çözüm, örnekler.

Dikkat!
Ek var
Özel Bölüm 555'teki materyaller.
Çok "pek değil..." olanlar için
Ve “çok…” diyenler için)

İkinci dereceden denklem türleri

İkinci dereceden denklem nedir? Nasıl görünüyor? Dönem içi ikinci dereceden denklem anahtar kelime "kare". Bu şu anlama gelir: denklemde mutlaka bir x kare olmalı. Buna ek olarak, denklem yalnızca X'i (birinci kuvvete göre) ve yalnızca bir sayıyı içerebilir (ya da içermeyebilir!) (Ücretsiz Üye). Ve ikiden büyük bir kuvvetin X'i olmamalıdır.

Matematiksel açıdan ikinci dereceden bir denklem, şu formdaki bir denklemdir:

Burada a, b ve c- bazı sayılar. b ve c- kesinlikle herhangi biri, ancak A– sıfırdan başka herhangi bir şey. Örneğin:

Burada A =1; B = 3; C = -4

Burada A =2; B = -0,5; C = 2,2

Burada A =-3; B = 6; C = -18

Peki, anlıyorsun...

Soldaki bu ikinci dereceden denklemlerde tam setüyeler. Katsayılı X'in karesi A, x üzeri katsayılı birinci kuvvet B Ve ücretsiz üye

Bu tür ikinci dereceden denklemlere denir tam dolu.

Ve eğer B= 0, ne elde ederiz? Sahibiz X'in birinci kuvveti kaybolacak. Bu, sıfırla çarpıldığında meydana gelir.) Örneğin şu şekilde ortaya çıkıyor:

5x2 -25 = 0,

2x2 -6x=0,

-x 2 +4x=0

Ve benzeri. Ve eğer her iki katsayı da B Ve C sıfıra eşitse, o zaman daha da basittir:

2x2 =0,

-0,3x2 =0

Bir şeyin eksik olduğu bu tür denklemlere denir tamamlanmamış ikinci dereceden denklemler. Bu oldukça mantıklı.) Lütfen x karenin tüm denklemlerde mevcut olduğunu unutmayın.

Bu arada neden A sıfıra eşit olamaz mı? Ve onun yerine sen geçiyorsun A sıfır.) X karemiz kaybolacak! Denklem doğrusal hale gelecektir. Ve çözüm tamamen farklı...

İkinci dereceden denklemlerin tüm ana türleri bunlardır. Tam ve eksik.

İkinci dereceden denklemlerin çözümü.

Tam ikinci dereceden denklemlerin çözümü.

İkinci dereceden denklemlerin çözülmesi kolaydır. Formüllere ve açık, basit kurallara göre. İlk aşamada verilen denklemi standart bir forma getirmek gerekir; forma:

Eğer denklem size zaten bu formda verilmişse, ilk aşamayı yapmanıza gerek yoktur.) Önemli olan tüm katsayıları doğru belirlemek, A, B Ve C.

İkinci dereceden bir denklemin köklerini bulma formülü şuna benzer:

Kök işaretinin altındaki ifadeye denir ayrımcı. Ama onun hakkında daha fazla bilgiyi aşağıda bulabilirsiniz. Gördüğünüz gibi X'i bulmak için şunu kullanıyoruz: sadece a, b ve c. Onlar. ikinci dereceden bir denklemin katsayıları. Değerleri dikkatlice değiştirin a, b ve c Bu formüle göre hesaplıyoruz. Hadi değiştirelim kendi işaretlerinle! Örneğin denklemde:

A =1; B = 3; C= -4. İşte bunu yazıyoruz:

Örnek neredeyse çözüldü:

Cevap bu.

Her şey çok basit. Peki hata yapmanın imkansız olduğunu mu düşünüyorsun? Evet, nasıl...

En yaygın hatalar işaret değerleriyle karışıklıktır a, b ve c. Daha doğrusu, işaretleriyle değil (nerede karıştırılmalı?), Kökleri hesaplama formülüne negatif değerlerin eklenmesiyle. Burada yardımcı olan, formülün belirli sayılarla ayrıntılı bir şekilde kaydedilmesidir. Hesaplamalarda sorun varsa, yap bunu!

Aşağıdaki örneği çözmemiz gerektiğini varsayalım:

Burada A = -6; B = -5; C = -1

Diyelim ki ilk seferde nadiren yanıt alabildiğinizi biliyorsunuz.

Tembel olmayın. Fazladan bir satır yazmak yaklaşık 30 saniye sürecektir ve hata sayısı keskin bir şekilde azalacak. Bu yüzden tüm parantez ve işaretlerle birlikte ayrıntılı olarak yazıyoruz:

Bu kadar dikkatli yazmak inanılmaz derecede zor görünüyor. Ama sadece öyle görünüyor. Bir şans ver. Peki ya da seç. Hangisi daha iyi, hızlı mı yoksa doğru mu? Üstelik seni mutlu edeceğim. Bir süre sonra her şeyi bu kadar dikkatli yazmaya gerek kalmayacak. Kendi kendine düzelecektir. Özellikle aşağıda açıklanan pratik teknikleri kullanıyorsanız. Pek çok eksiği olan bu kötü örnek, kolayca ve hatasız çözülebilir!

Ancak ikinci dereceden denklemler sıklıkla biraz farklı görünür. Örneğin şöyle:

Tanıdın mı?) Evet! Bu tamamlanmamış ikinci dereceden denklemler.

Tamamlanmamış ikinci dereceden denklemlerin çözümü.

Genel bir formül kullanılarak da çözülebilirler. Sadece burada neye eşit olduklarını doğru anlamanız gerekiyor. a, b ve c.

Anladın mı? İlk örnekte bir = 1; b = -4; A C? Hiç orada değil! Evet, doğru. Matematikte bu şu anlama gelir: c = 0 ! Bu kadar. Bunun yerine formülde sıfırı değiştirin C, ve başaracağız. İkinci örnekle aynı. Yalnız burada sıfır yok İle, A B !

Ancak tamamlanmamış ikinci dereceden denklemler çok daha basit bir şekilde çözülebilir. Herhangi bir formül olmadan. İlk tamamlanmamış denklemi ele alalım. Sol tarafta ne yapabilirsiniz? X'i parantezlerden çıkarabilirsiniz! Hadi çıkaralım.

Peki bundan ne haber? Ve çarpımın sıfıra eşit olması ancak ve ancak faktörlerden herhangi birinin sıfıra eşit olması durumunda! Bana inanmıyor musun? Tamam, o zaman çarpıldığında sıfır verecek iki sıfır olmayan sayı bulun!
Çalışmıyor? Bu kadar...
Bu nedenle güvenle yazabiliriz: x 1 = 0, x 2 = 4.

Tüm. Bunlar denklemimizin kökleri olacak. Her ikisi de uygundur. Bunlardan herhangi birini orijinal denklemde yerine koyduğumuzda doğru özdeşliği 0 = 0 elde ederiz. Gördüğünüz gibi çözüm, genel formülü kullanmaktan çok daha basittir. Bu arada, hangi X'in birinci, hangisinin ikinci olacağını kesinlikle kayıtsız bırakmama izin verin. Sırayla yazmakta fayda var x 1- daha küçük olan ve x 2- hangisi daha büyükse.

İkinci denklem de basit bir şekilde çözülebilir. 9'u sağ tarafa taşıyın. Şunu elde ederiz:

Geriye kalan tek şey 9'dan kökü çıkarmak, hepsi bu. Ortaya çıkacak:

Ayrıca iki kök . x1 = -3, x 2 = 3.

Tüm tamamlanmamış ikinci dereceden denklemler bu şekilde çözülür. Ya X'i parantezlerin dışına yerleştirerek ya da sayıyı sağa taşıyıp ardından kökü çıkartarak.
Bu teknikleri karıştırmak son derece zordur. Basitçe, çünkü ilk durumda X'in kökünü çıkarmak zorunda kalacaksınız ki bu bir şekilde anlaşılmazdır ve ikinci durumda parantez içinde çıkarılacak hiçbir şey yoktur...

Ayrımcı. Ayırıcı formül.

sihirli kelime ayrımcı ! Nadiren bir lise öğrencisi bu kelimeyi duymamıştır! “Ayrımcı aracılığıyla çözüyoruz” ifadesi güven ve güvence veriyor. Çünkü ayrımcıdan hile beklemeye gerek yok! Kullanımı basit ve sorunsuzdur.) En çok hatırlatırım Genel formülçözümler için herhangi ikinci dereceden denklemler:

Kök işaretinin altındaki ifadeye diskriminant denir. Tipik olarak ayrımcı harfle gösterilir D. Diskriminant formülü:

D = b 2 - 4ac

Peki bu ifadede bu kadar dikkat çekici olan ne? Neden özel bir ismi hak etti? Ne diskriminantın anlamı? Nihayet -B, veya 2a bu formülde ona özel olarak hiçbir şey demiyorlar... Harfler ve harfler.

İşte olay şu. Bu formülü kullanarak ikinci dereceden bir denklemi çözerken mümkündür sadece üç vaka.

1. Diskriminant pozitiftir. Bu, kökün ondan çıkarılabileceği anlamına gelir. Kökün iyi mi yoksa kötü mü çıkarıldığı başka bir sorudur. Önemli olan prensipte neyin çıkarıldığıdır. O halde ikinci dereceden denkleminizin iki kökü vardır. İki farklı çözüm.

2. Diskriminant sıfırdır. O zaman tek bir çözümünüz olacak. Çünkü paya sıfır eklemek veya çıkarmak hiçbir şeyi değiştirmez. Aslına bakılırsa bu tek bir kök değil, iki özdeş. Ancak basitleştirilmiş bir versiyonda, hakkında konuşmak gelenekseldir. bir çözüm.

3. Diskriminant negatiftir. Negatif bir sayının karekökü alınamaz. İyi tamam. Bu, hiçbir çözümün olmadığı anlamına gelir.

Dürüst olmak gerekirse, ikinci dereceden denklemleri basit bir şekilde çözerken, diskriminant kavramına gerçekten ihtiyaç duyulmaz. Katsayıların değerlerini formülde yerine koyarız ve sayarız. Orada her şey kendi kendine oluyor, iki kök, bir ve yok. Ancak daha karmaşık görevleri bilgi olmadan çözerken diskriminantın anlamı ve formülü yeterli değil. Özellikle parametreli denklemlerde. Bu tür denklemler Devlet Sınavı ve Birleşik Devlet Sınavı için akrobasi niteliğindedir!)

Bu yüzden, ikinci dereceden denklemler nasıl çözülür hatırladığın ayrımcı aracılığıyla. Veya öğrendiniz ki bu da fena değil.) Nasıl doğru bir şekilde belirleyeceğinizi biliyorsunuz a, b ve c. Nasıl olduğunu biliyor musun? dikkatle bunları kök formülde değiştirin ve dikkatle sonucu sayın. Buradaki anahtar kelimenin şu olduğunu anlıyorsunuz: dikkatle mi?

Şimdi hata sayısını önemli ölçüde azaltan pratik teknikleri not edin. Dikkatsizlikten kaynaklananların aynısı... Daha sonra acı verici ve rencide edici hale gelenler...

İlk randevu . İkinci dereceden bir denklemi çözmeden ve onu standart forma getirmeden önce tembel olmayın. Bu ne anlama gelir?
Diyelim ki tüm dönüşümlerden sonra aşağıdaki denklemi elde ettiniz:

Kök formülünü yazmak için acele etmeyin! Neredeyse kesinlikle oranları karıştıracaksınız a, b ve c.Örneği doğru şekilde oluşturun. Önce X'in karesi, sonra karesiz, sonra da serbest terim. Bunun gibi:

Ve yine acele etmeyin! X karesinin önündeki eksi sizi gerçekten üzebilir. Unutmak kolaydır... Eksilerden kurtulun. Nasıl? Evet, önceki konuda öğretildiği gibi! Denklemin tamamını -1 ile çarpmamız gerekiyor. Şunu elde ederiz:

Ancak artık köklerin formülünü güvenle yazabilir, diskriminantı hesaplayabilir ve örneği çözmeyi tamamlayabilirsiniz. Kendin için karar ver. Artık 2 ve -1 köklerine sahip olmalısınız.

Resepsiyon ikinci. Kökleri kontrol edin! Vieta teoremine göre. Korkma, her şeyi açıklayacağım! Kontrol etme son şey denklem. Onlar. kök formülü yazarken kullandığımız formül. Eğer (bu örnekte olduğu gibi) katsayı bir = 1, kökleri kontrol etmek kolaydır. Bunları çoğaltmak yeterlidir. Sonuç ücretsiz bir üye olmalıdır, yani. bizim durumumuzda -2. Lütfen dikkat, 2 değil, -2! Ücretsiz Üye senin burcunla . Eğer işe yaramazsa, bu zaten bir yerlerde işleri berbat ettikleri anlamına gelir. Hatayı arayın.

İşe yararsa kökleri eklemeniz gerekir. Son ve son kontrol. Katsayı şu şekilde olmalıdır: Bİle zıt aşina. Bizim durumumuzda -1+2 = +1. bir katsayı B X'ten önce gelen -1'e eşittir. Yani her şey doğru!
Bunun yalnızca x karenin saf olduğu ve katsayılı olduğu örnekler için bu kadar basit olması üzücü bir = 1. Ama en azından bu tür denklemleri kontrol edin! Gittikçe daha az hata olacak.

Üçüncü resepsiyon . Denkleminizin kesirli katsayıları varsa kesirlerden kurtulun! "Denklemler nasıl çözülür? Kimlik dönüşümleri" dersinde anlatıldığı gibi denklemi ortak bir paydayla çarpın. Kesirlerle çalışırken bazı nedenlerden dolayı hatalar ortaya çıkmaya devam ediyor...

Bu arada, kötü örneği bir sürü eksiyle basitleştireceğime söz verdim. Lütfen! İşte burada.

Eksilerle karıştırılmamak için denklemi -1 ile çarpıyoruz. Şunu elde ederiz:

Bu kadar! Çözmek bir zevktir!

O halde konuyu özetleyelim.

Pratik ipuçları:

1. Çözmeden önce ikinci dereceden denklemi standart forma getirip oluşturuyoruz Sağ.

2. X karenin önünde negatif bir katsayı varsa denklemin tamamını -1 ile çarparak onu ortadan kaldırırız.

3. Katsayılar kesirli ise denklemin tamamını karşılık gelen faktörle çarparak kesirleri ortadan kaldırırız.

4. Eğer x kare safsa katsayısı bire eşitse çözüm Vieta teoremi kullanılarak kolayca doğrulanabilir. Yap!

Artık karar verebiliriz.)

Denklemleri çözün:

8x2 - 6x + 1 = 0

x 2 + 3x + 8 = 0

x 2 - 4x + 4 = 0

(x+1) 2 + x + 1 = (x+1)(x+2)

Cevaplar (karışıklık içinde):

x 1 = 0
x 2 = 5

x 1,2 =2

x 1 = 2
x2 = -0,5

x - herhangi bir sayı

x1 = -3
x 2 = 3

çözüm yok

x 1 = 0,25
x2 = 0,5

Her şey uyuyor mu? Harika! İkinci dereceden denklemler sana göre değil baş ağrısı. İlk üçü işe yaradı ama geri kalanı işe yaramadı mı? O zaman sorun ikinci dereceden denklemlerde değil. Sorun denklemlerin özdeş dönüşümlerindedir. Linke bir göz atın, işinize yarar.

Pek işe yaramıyor mu? Yoksa hiç mi işe yaramıyor? O zaman Bölüm 555 size yardımcı olacaktır.Bütün bu örnekler burada ayrıntılı olarak verilmiştir. Gösterilen anaÇözümdeki hatalar. Elbette çeşitli denklemlerin çözümünde aynı dönüşümlerin kullanılmasından da bahsediyoruz. Çok yardımcı oluyor!

Bu siteyi beğendiyseniz...

Bu arada, sizin için birkaç ilginç sitem daha var.)

Örnek çözerek pratik yapabilir ve seviyenizi öğrenebilirsiniz. Anında doğrulama ile test etme. Hadi öğrenelim - ilgiyle!)

Fonksiyonlar ve türevler hakkında bilgi sahibi olabilirsiniz.



Bir hata bulursanız lütfen bir metin parçası seçin ve Ctrl+Enter tuşlarına basın.