Мононуклеарные фагоциты. Система мононуклеарных фагоцитов

Все компоненты филогенетически более древние средства защиты организма (по сравнению с иммунной системой), которые без участия лимфоцитов и антител могут действовать на широкий спектр возбудителей инфекций.

Система резистентности активируется индукторами воспаления и подавляется его ингибиторами. По сравнению с иммунитетом система неспецифической резистентности значительно варьирует в зависимости от временных и индивидуальных различий. Синтез всех компонентов генетически детерминирован, они присутствуют в организме к моменту рождения. Благодаря сбалансированности иммунной системы и системы неспецифической резистентности достигается сохранение индивидуальной целостности высокоразвитого организма. С другой стороны, частичные дефекты и нарушения механизмов регуляции приводят к многочисленным заболеваниям.

Фагоцитарная система . Под фагоцитозом понимают активное поглощение клетками твердого материала. У одноклеточных этот процесс служит в основном для питания. У многих многоклеточных организмов, включая человека, фагоцитоз служит фундаментальным механизмом противоинфекционной защиты. Фагоциты представляют собой клетки с особо выраженной способностью к фагоцитозу. Морфологически и функционально различают моноцитарные (макрофаги) и гранулоцитарные (гранулоциты и микрофаги) компоненты фагоцитарной системы. Всем фагоцитам присущи следующие функции:
- миграция и хемотаксис ;
- адгезия и фагоцитоз;
- цитотоксичность;
- секреция гидролаз и других биологически активных веществ.

Мононуклеарные фагоциты способны к ограниченной пролиферации вне костного мозга, к синтезу и секреции многочисленных белков, участвуют в процессах дифференцировки и созревания тканей. Кроме того, макрофаги являются антиген-презентирующими клетками, т. е. перерабатывают и представляют антиген для распознавания клетками иммунной системы и тем самым запускают механизм иммунной реакции.

Гранулоцитарная система фагоцитоза . Гранулоциты генерируют в процессе гранулопоэза в костном мозге. Для них характерно большое количество гранул в цитоплазме, по способности к окрашиванию которых различают базофильные, эозинофильные и нейтрофильные гранулоциты. С позиции оценки системы резистентности человека огромное значение имеют полиморфно-ядерные нейтрофилы (ПМН), что определяется как их количеством, так и функцией. Время созревания ПМН в костном мозге составляет от 8 до 14 дней. Затем они поступают в кровь зрелыми, неспособными к делению клетками диаметром 10-12 мкм со сложным сегментированным ядром. Многие клетки содержат заметные количества слабо азурофильных цитоплазматических гранул, а также складчатую мембрану. Через несколько часов полиморфно-ядерные нейтрофилы выходят из кровеносного русла в интерстициальное пространство и погибают через 1-2 дня. Разные типы гранулоцитов участвуют во всех формах воспаления и играют при этом ведущую роль. Тесная взаимосвязь выявляется между макрофагами и полиморфно-ядерными нейтрофилами, а также эозинофильными и базофильными гранулоцитами. Полиморфно-ядерные нейтрофилы представляют собой основной компонент лейкоцитов крови человека. Ежедневно из костного мозга в кровь выходит очень много полиморфно-ядерных нейтрофилов, а при острых инфекциях это количество может возрастать в 10-20 раз, при этом в крови появляются и незрелые формы (сдвиг формулы крови влево). Размеры миелопоэза определяются и регулируются специфическими факторами роста гранулоцитов, продуцируемых периферическими гранулоцитами и макрофагами. Выход из костного мозга и скопление клеток в очаге воспаления регулируются факторами хемотаксиса. ПМН играют определяющую роль в противоинфекционной защите, которая осуществляется в организме непрерывно, поэтому перманентный агранулоцитоз не совместим с понятием живой функционирующий организм. Активность ПМН тесно связана с гранулами, содержимое которых представлено ферментами и другими биологически активными веществами. На стадии промиелоцита в цитоплазме клетки появляются первичные азурофильные гранулы, у миелоцита выявляют также так называемые вторичные (специфические) гранулы. Эти формы можно различить при электронной микроскопии и разделить при фракционировании субклеточных структур. Препаративное ультрацентрифугирование позволило выявить также фракцию малых гранул, соответствующих лизосомам полиморфно-ядерные нейтрофилы. Независимо от вида гранулы представляют собой клеточные структуры, содержащие гидролитические ферменты или белки. Они окружены липопротеиновой оболочкой, способной при активации к слиянию с аналогичными субклеточными структурами и цитоплазматической мембраной.

Функциональная активность полиморфно-ядерных нейтрофилов регулируется большим количеством мембранных рецепторов, растворимых и корпускулярных активаторов. Различают покоящиеся и активированные полиморфно-ядерные нейтрофилы. Первые имеют округлую форму, циркулируют в кровотоке и других биологических жидкостях организма и характеризуются окислительным характером обмена веществ. Адгезия на другие клетки, хемотаксические факторы и фагоцитоз приводят к активации полиморфно-ядерных нейтрофилов, что определяют по усилению поглощения кислорода и глюкозы, а также выделения клетками углекислого газа. При фагоцитозе или массивном действии хемотаксических факторов увеличивается потребность клеток в энергии, что достигается за счет монофосфатного шунта. В условиях гипоксии можно за короткое время с помощью гликолиза получить достаточный запас АТФ. Последующие реакции активированных полиморфно-ядерных нейтрофилов зависят от вида стимуляции. Продукты синтеза ограничены метаболитами арахидоновой кислоты и другими липидными факторами.

Мононуклеарная фагоцитарная система . Доминирующими клетками мононуклеарной фагоцитарной системы являются макрофаги. Формы проявления их активности крайне гетерогенны. Общее происхождение клеток зависит от моноцитопоэза костного мозга, откуда моноциты поступают в кровь, где циркулируют до трех дней, а затем мигрируют в прилежащие ткани. Здесь происходит окончательное созревание моноцитов либо и мобильные гистиоциты (тканевые макрофаги), либо в высокодифференцированные ткань специфичные макрофаги (альвеолярные макрофаги легких, купферовские клетки печени). Морфологическая гетерогенность клеток соответствует функциональному разнообразию мононуклеарной системы. У гистиоцита ярко выражены способность к фагоцитозу, секреции и синтезу. С другой стороны, дендритные клетки из лимфатических узлов и селезенки, а также клетки Лангерганса кожи более специализированы в направлении переработки и презентации антигена. Клетки мононуклеарной фагоцитарной системы могут жить от нескольких недель до нескольких месяцев, их диаметр составляет 15-25 мкм, ядро овальное или почкообразное. У промоноцитов и моноцитов выявляют азурофильные гранулы, а у зрелых макрофагов - аналогичные клеткам гранулоцитарного ряда. Они содержат ряд гидролитических ферментов, другие активные вещества и лишь следы миелопероксидазы и лактоферрина. Моноцитопоэз костного мозга можно повысить лишь в 2-4 раза. Клетки мононуклеарной фагоцитарной системы вне костного мозга пролиферируют крайне ограниченно. Замещение клеток мононуклеарной фагоцитарной системы в тканях осуществляется за счет моноцитов крови. Следует различать покоящиеся и активированные макрофаги, причем активация может затрагивать самые разнообразные функции клетки. Макрофаги обладают всеми функциями клеток мононуклеарной фагоцитарной системы, кроме того, они синтезируют и секретируют во внеклеточную среду большое количество белков. Гидролазы синтезируются макрофагами в большом количестве и либо накапливаются в лизосомах, либо сразу секретируются. Лизоцим нарабатывается в клетках непрерывно и также секретируется, под действием активаторов его уровень в крови повышается, что позволяет судить о состоянии активности мононуклеарной фагоцитарной системы. Обмен веществ в макрофагах может протекать как по окислительному, так и по гликолитическому пути. При активации также наблюдается «кислородный взрыв», реализующийся через гексозомонофосфатный шунт и проявляющийся в образовании активных форм кислорода.

Специфические функции фагоцитов . Фагоцитоз - это характерная функция фагоцитов, он может протекать в различных вариантах и сочетаться с другими проявлениями функциональной активности:
- распознаванием хемотаксических сигналов;
- хемотаксисом;
- фиксацией на твердом субстрате (адгезия);
- эндоцитозом;
- реакцией на нефагоцитируемые (из-за размеров) агрегаты;
- секрецией гидролаз и других веществ;
- внутриклеточным распадом частиц;
- выведением продуктов распада из клетки.

Цитотоксические и воспалительные механизмы . Активированные фагоциты представляют собой высокоэффективные цитотоксические клетки. При этом следует подразделять следующие механизмы:

1) внутриклеточный цитолиз и бактерицидность после фагоцитоза;

2) внеклеточная цитотоксичность:
- контактная цитотоксичность (фагоцит и клетка-мишень по крайней мере на короткое время связаны друг с другом);
- дистантная цитотоксичность (фагоцит и клетка-мишень соседствуют друг с другом, но непосредственно не контактируют).

Внутриклеточная и контактная виды цитотоксичности могут быть обусловлены иммунологически (опосредованы антителами) или иметь неспецифический характер. Дистантная цитотоксичность всегда неспецифична, т. е. она индуцируется токсически действующими ферментами и активными формами кислорода из активированных макрофагов. В эту категорию относят цитотоксические эффекты на опухолевые клетки, опосредованные фактором некроза опухолей и альфа-интерфероном.

Огромное значение в рамках противоинфекционной защиты придают бактерицидности фагоцитов, которая проявляется внутриклеточно после фагоцитоза микроорганизмов. При микроскопии фагоцитоза нейтрофильных гранулоцитов наблюдается более или менее выраженная дегрануляция клеток. Речь идет о слиянии специфических и азурофильных гранул с фагосомой и цитоплазматической мембраной. Лизосомные ферменты и биологически активные вещества секретируются как в фагосому, так и в окружающую среду. При этом происходит активация гидролаз, действующих вне клетки в роли факторов, способствующих воспалению и опосредующих дистантную цитотоксичность. Их максимальная концентрация отмечена в фаголизосоме, в результате чего происходит быстрая деградация белков, липидов и полисахаридов. Следует заметить, что микроорганизмы имеют оболочку, относительно резистентную к действию лизосомных ферментов, однако в фаголизосоме она должна быть разрушена. Различают O2-зависимые и O2-независимые механизмы цитотоксичности и бактерицидности фагоцитов.

Кислородонезависимая цитотоксичность . В области воспаления с нарушенной микроциркуляцией, гипоксией и аноксией фагоциты характеризуются ограниченной жизнеспособностью и активностью за счет гликолитического обмена веществ. Бактерицидность фаголизосом определяется кислыми значениями рН, содержанием ряда токсических катионных белков, кислых гидролаз и лизоцима. Активированные ПМН и макрофаги способны также к независимой контактной цитотоксичности. Она может быть обусловлена АЗКЦ или другими неспецифическими механизмами, направленными, например, на опухолевые клетки. О биохимических основах этого феномена пока не известно. Зависимая и независимая цитотоксичность проявляются преимущественно суммарно, однако ряд лизосомных гидролаз инактивируется свободными радикалами. Взаимное влияние различных лизосомных гидролаз, протеиназ, липаз, с одной стороны, и катионных белков вместе с ингибиторами ферментов - с другой, полностью охватить невозможно.

Механизмы бактерицидности гранулоцитов и макрофагов аналогичны. В зависимости от места локализации макрофаги могут действовать как противовоспалительно, так и вызывать воспаление. Эти эффекты обусловлены процессами секреции и синтеза.

Функции секреции и синтеза фагоцитов . Наряду с хемотаксисом и фагоцитозом секреция относится к фундаментальным функциям фагоцитов. Все 3 функции тесно связаны друг с другом, причем синтез и секреция необходимы для кооперации лейкоцитов с эндотелиальными клетками, активации тромбоцитов, регуляции эндокринных желез и гемопоэза . Кроме того, синтез белков в макрофагах и их секреция важны для системы свертывания крови, системы комплемента и кининовой системы. Следует выделить несколько процессов:

1) опустошение гранул или лизосом макрофагов и гранулоцитов;

2) синтез и секреция активных липидов;

3) синтез и секреция многочисленных белков у макрофагов.

Макрофаги синтезируют ряд факторов системы комплемента и сами несут рецепторы для некоторых продуктов активации этой системы. Особое значение для иммунной системы имеет синтез клетками макрофагальной системы интерлейкина-1, который, с одной стороны, индуцирует пролиферацию лимфоцитов, с другой - активирует синтез белков острой фазы в печени и способствует повышению температуры тела (эндогенный пироген).

Через синтез интерферона макрофаги регулируют резистентность организма к вирусной инфекции. Существенную роль в регуляции резистентности, осуществляемой макрофагами, играет синтез этими клетками колониестимулирующих факторов G-CSF, GM-CSF) миело- и моноцитопоэза костного мозга. Широкий спектр выполняемых макрофагами функций позволяет оценить их роль в патогенезе заболеваний, протекающих как с воспалительными проявлениями, так и без них. Сопоставление данных о свойствах макрофагов с информацией о других клетках системы резистентности и иммунной системы позволяет сделать вывод, что наши знания довольно ограничены. Использование методов молекулярной биологии и генной инженерии дает возможность получать продукты синтеза макрофагов в очищенном виде и в значительном количестве. К наиболее интересным из известных факторов макрофагов относят фактор некроза опухолей и интерферон . Благодаря своим свойствам макрофагальная система занимает центральное место в защите от бактериальных, вирусных и опухолевых заболеваний.

  • II. Организм как целостная система. Возрастная периодизация развития. Общие закономерности роста и развития организма. Физическое развитие……………………………………………………………………………….с. 2
  • 7 Сист монон-рных фагоцитов обьединяет на основе единства происхождения, морфологии и функции моноциты переферической крови тканевые макрофаги различной локализации. Моноциты переферической крови в присутствии определенных факторов могут дифференцироваться не только в тканевые макрофаги но и в дендритные клетки(ДК). Такими факторами явл-ся ГМ-КСФ и ИЛ-4. В рез-те действия этих цитокинов обр-ся мономорфная популяция ДК, имеющая хар-ки незрелых ДК переферических тканей. Созревание, дифференцировка и активация макрофагов зависят от ростовых факторов(ИЛ-3, ГМ-КСФ,М-КСФ) и от активирующих цитокинов (IFN-y).Среди функций IFN-y одной из важнейшей явл-ся активация эффекторных функций макрофагов: их внутриклеточной микробицидности и цитотоксичности, продукции ими цитокинов, супероксидных и нитроксидных радикалов, простагландинов.

    Осн. Ф-ии макрофагов: 1) Фагоцитоз и пиноцитоз-поглощение частиц или клеток за счет обтекания их псевдоподиями. Благодаря фагацитозу макрофаги участвуют в удалении из орг-ма иммунных комплексов и клеток, подвергшихся апоптозу. 2)участие в процессах репарации и заживления ран-макрофаги секретируют несколько ростовых факторов, стимулирующих ангиогенез и индуцируют формирование грануляционной ткани и реэпитализацию: базисный фактор роста фибробластов(bFGF), ростовые трансформирующие факторы GTF-a, GTF-b, инсулиноподобный ростовой фактор (IGF). 3) Секреторная-секретируют более 100 различных видов молекул. А) ферменты неспецифической противоинфекционной защиты(перксидаза, активные формы кислорода, окись азота, катионные белки, лизоцим и интерферон) Б) ферменты, активные в отношении внелеточных белков-коллагеназа, эластаза, активаторы плазминогена, лизосомные ферменты. В) БАВ, являющиеся медиаторами и модуляторами различных физиологических процессов, в первую очередь-воспаления: простагландины, лейкотриены, циклические нуклеотиды. Г) вещества, активирующие или регулирующие иммунные реакции. 4) регуляция иммунного ответа-моноциты крови и тканевые макрофаги синтезируют ряд факторов, влияющих на дифференцировку, пролиферацию и функциональную активность других участников иммунного ответа-определенных субпопуляций Т- и В-лимфоцитов 5) эффекторные функции макрофагов при специфическом иммунном ответе-проявляются в реакциях ГЗТ, когда в инфильтратах находят, в осн. Моноциты. Рецепторы макрофагов-на пов-ти макрофагов сод-ся большой набор рецепторов, обеспечивающих участие макофагов в широком круге физиологических реакций, в т.ч. и участие в специфическом иммунном ответе. Так, на мембране макрофагов экспрессированы различные рецепторы для захвата микроорганизмов: маннозный рецептор (MMR). Рецепторы для бактериальных липополисахаридов (CD14), на мембране макрофагов эксперссированы рецепторы для захвата опсонизированных микроорганизмов: FcR для иммуноглобулинов, а также CR1, CR3, CR4-для фрагментов активированного комплемента. На мембране макрофагов эксперссированы гликопротеиновы рецепторы для многих цитокинов. Связывание цитокина со своим рецептором служит первым звеном в цепи передачи сигнала активации к ядру клетки.



    Неспецифические механизмы защиты. Характеристика макро- и микрофагов.

    Неспецифические (врожденные) клеточные механизмы защиты обеспечиваются фагоцитами: 1. макрофаги (мононуклеарные клетки). 2. микрофаги (полинуклеарные клетхи).

    Фагоциты:

    макрофаги (мононуклеарные клетки) (нейтро- . зоэино- ,базофилы)



    Моноциты

    Фагоциты открыты в 1882 Мечниковым.

    Макрофаги являются мононукпеарными клетками и раньше объе­диняются в мононуклеарную фагоцитарную систему - моноциты красного костного мозга, свободные тканевые макрофаги и фиксированные тканевые макрофаги. Моноциты красного костного мозга находятся в центре эритробластического островка (недифференциротанные клетки) и даёт начало всем-макрофагам: моноциты красного костного мозга выходят а кровь и сущест­вуют там в качестве моноцитов крови (6-8% от лимфоцитов крови). Моноциты крови способны проходить сквозь эпителий кровеносных сосудов тканей, где он превращается в макрофаг. Назад макрофаги в кровь не возвращаются. Если моноциты крови имеют диаметр 11-20 нм. то тканевые макрофаги имеют размеры 40-50 мкм. Т. е. макрофаги увеличиваются в размерах и называются распластанными макрофагами, которые могут взаимодействовать с лимфоцитами. Еще на их поверхности образуются рецепторы для взаимодействия с lg G и комплементом. Такое взаимодейст­вие макрофагов с lo G и комплементами способствует фагоцитозу.

    Макрофаги делятся на: 1. макрофаги легких (альвеолярные). 2. макрофаги соединительной ткани (гистиоциты) 3. макрофаги серозных полостей. 4. макрофаги воспалительных экссудатов.

    Свободные макрофаги диффузно рассеяны по всему организму и свободно перемещаются, что способствует освобождению организма от чужеродного материала. Распластанные макрофаги способны склеиваться между собой, создавая конгиамераты, которые создают условия (механиче­ское препятствие) для распространения микроорганизмов. Кроме того макрофаги являются АПК.

    Тканевые (связанные) макрофаги входят в состав идентичных ор­ганов: 1. макрофаги печени (купферовские клетки) - с большим количеством отростков, очищают кровь поступающую по воротной вене от кишечника. Участвуют в обмене НЬ и желчных пигментов. 2. макрофаги селезенки (находятся в корковом и мозговом слое) - имеют множество отростков, обладают фагоцитарной силой, уничтожают старые эритроциты. 3. макрофа­ги лимфоузлов - находятся в корковом и мозговом веществе, обезвреживают микроорганизмы лимфы. 4. макрофаги плаценты - защищают плаценту от бактерий. 5. макрофаги микрогпии - фагоцитируют продукты распада нервной ткани и запасают жир.

    Все макрофаги продуцируют БАВ - цитокины, которые связывают функции макрофаги воедино.

    Микрофаги полинуклеарные фагоциты, происходят из стволовых клеток красного костного мозга, на 2/3 состоят из иейтрофилов, эозинофилов до 5%, базофилов до1%. i

    Нейтрофилы, эозинофилы. базофилы выходят из кровяного русла; в ткани и превращаются в микрофаги, назад не возвращаются. Самые сильные нейтрофилы могут уничтожить до 30 бактерий. Сила их оценивает­ся по фагоцитарной и бактериальной активности и хемотаксическим свойствам. При инфекции микрофаги устремляются из кровяного русла в ткани, т. к. увеличивается проницаемость сосудов для них. Это обусловлено повышением гистамина при воспалительных процессах. Второй пик проницаемости через 6-8 часов после проникновения и связан с действием.

    Рис. 7.1. Мононуклеарная фагоцитарная система

    Мононуклеарная фагоцитарная (МФ) система - это совокупность клеток, происходящих из моноцитов, обладающих фагоцитарной активностью. Кроме того, к фагоцитирующим клеткам относятся полинуклеарные фагоциты (ПМЯЛ) - нейтрофилы, эозинофилы, базофилы, микроглия (на рис. затушеваны).

    Важную роль в механизмах неспецифичкской защиты играют также ретикулярные, эндотелиальные клетки, которые не выполняют фагоцитарной функции, а поддерживают целостность лимфоидной ткани и кровеносных сосудов (Эндотелиальные клетки выстилают сосуды, ретикурные является основой кроветворных органов, образуются из мезенхимы).

    Фагоцит, описанный И.И. Мечниковым, состоит из 7 следующих фаз:

    1) Хемотаксис - движение клеток в направлении градиента молекул, выделенных микроорганизмами.

    Хемотаксические факторы упорядочивают движения фагоцитов. Они воздействуют на специфические рецепторы на плазмолемме фагоцитов стимуляция которых передается на элементы его цитоскелета и изменяет экспрессию адгезивных молекул. Вследствие этого формируются псевдоподии, которые обратимо прикрепляются к элементам соединительной ткани, что обеспечивает направленную миграцию клеток.

    2) Адгезия (прикрепление) клетки к объекту фагоцитоза Происходит при взаимодействии её рецепторного аппарата с молекулами на поверхности бактерии. Протекает в две стадии: -обратимая и непрочная -необратимая, прочная.

    3) Захват бактерии клетки с формированием фагосомы Псевдоподии охватывают бактерию, заключая ее в мембранный пузырек - фагосому. Если бактерия инкапсулирована, то на нее садятся IgG или СЗВ. В таком случае бактерия опсонизирована.

    4) Слияние гранул нейтрофила с фагосомой с образованием фаголизосомы Содержимое гранул выливается в просвет фаголизосомы (рН кислая).

    5) Повреждение и внутриклеточное переваривание бактерии Гибель бактерии наступает вследствие действия на нее антимикробных веществ, далее он подвергается перевариванию лизосомальными ферментами. Бактерицидный эффект усиливается действием токсичных реактивных биоокислителей (перикисью водорода, молекул. Кислородом, супероксидными радикалами, гипохлоритом...)

    Гидрофобность



    Рис. 7.2. Схема фаго

    Рис. 7.2. Схема фагацитоза

    Фагоцитоз, являясь механизмом неспецифической защиты (фагоцитироваться могут любые инородные частицы независимо от наличия иммунизации), в то же время способствует иммунологическим механизмам защиты. Это связано, во-первых, с тем, что поглощая макромолекулы и расщепляя их, фагоцит как бы раскрывает структурные части молекул, отличающиеся чужеродностью. Во-вторых, фагоцитоз в условиях иммунологической защиты протекает быстрее и эффективнее. Таким образом, явление фагоцитоза занимает промежуточное место между механизмами специфической и неспецифической защиты. Это еще раз подчеркивает условность деления механизмов защиты клеточного гомеостаза на специфические и неспецифические.

    Нефагоцитарный механизм разрушения микробов характерен для ситуаций, когда микроорганизмы имеют столь большие размеры, что клетки не могут их поглощать. В таких случаях фагоциты скапливаются вокруг бактерии и выбрасывают содержимое своих гранул, уничтожая микроб большими концентрациями антимикробных веществ.

    Воспалительная реакциия также относится к клеточным неспецифическим реакциям. Она является эволюционно выработанным процессом защиты внутренней среды от проникновения чужеродных макромолекул, поскольку внедрившиеся в ткань чужеродные начала, например, микроорганизмы, фиксируются в месте внедрения, разрушаются и даже удаляются из ткани во внешнюю среду с жидкой средой очага воспаления - экссудатом. Клеточные элементы как тканевого происхождения, так и выходящие в очаг из крови (лейкоциты), образуют вокруг места внедрения своеобразный защитный вал, препятствующий распространению чужеродных частиц по внутренней среде. В очаге воспаления особенно эффективно протекает процесс фагоцитоза



    Гуморальные факторы внутренней среды, обеспечивающие механизмы неспецифической защиты, представлены пропердиновой системой и системой комплемента, осуществляющие лизис чужеродных клеток. При этом система комплемента, хотя и может активироваться неиммунологическим путем, обычно вовлекается в иммунологические процессы и поэтому скорее должна относиться к специфическим механизмам защиты.

    Рис.7.3. Система комплемента.

    Пропердиновая система реализует свой защитный эффект независимо от иммунных реакций.

    К числу гуморальных факторов неспецифической защиты относят также содержащиеся в плазме крови и тканевой жидкости лейкин ы, плакины, бетализины, л и з о ц м и т.д.. Лейкины выделяются лейкоцитами, плакины - тромбоцитами крови, они оказывают отчетливое бактериолитическое действие. Еще большим литическим эффектом на стафилококки и анаэробные микроорганизмы обладают бета-лизины плазмы крови. Содержание и активность этих гуморальных факторов не меняются при иммунизации, что дает основание считать их неспецифическими факторами защиты. К числу последних следует также отнести и довольно большой спектр веществ тканевой жидкости, обладающих способностью подавлять ферментативную активность микроорганизмов и жизнедеятельность вирусов. Это ингибиторы гиалуронидазы, фосфолипаз, коллагеназы, плазмина и интерферон лейкоцитов.

    Часто случаев мононуклеары в общем анализе крови свидетельствуют о развитии у человека патологического состояния. Наличие в крови измененных клеток никогда не должно оставаться без внимания.

    Мононуклеары – это одноядерные клетки, которые отвечают за слаженную работу иммунной системы. Некоторые пациенты не знают, что такое мононуклеары и ошибочно полагают, что этих элементов крови вовсе не должно быть. Это не совсем так.

    Рассматриваемые клетки относятся к фагоцитам, то есть они способны поглощать и обезвреживать вредоносные микроорганизмы. Из-за проникновения вирусов их количество увеличивается, они вырабатывают специфические антитела.

    Мононуклеары и их виды

    Атипичные мононуклеары в общем анализе крови определяются как одноядерные клетки и подразделяются на лимфоциты и моноциты. Лимфоциты отвечают за выработку антител для борьбы с инфекцией. Моноциты поглощают патогенные микроорганизмы и сигнализируют другим клеткам о том, что в организм поступила инфекция.

    В-лимфоциты отвечают за выработку иммунитета к большому количеству разновидностей вирусов. В организме человека образуется иммунная память, благодаря которой пациент намного легче переносит последующее вторжение микроорганизмов.

    Присутствие мононуклеаров в общем анализе крови сигнализирует о наличии тяжелых инфекционных патологий.

    Атипичные мононуклеары и вироциты

    Мононуклеары в общем анализе часто обозначаются как вироциты. Организм синтезирует их для предупреждения развития вирусной инфекции. Случается, что анализ крови обнаруживает увеличение количества таких клеток при мононуклеозе. Это заболевание часто имеет те же симптомы, что и другие инфекционные вирусные патологии.

    Наибольшая опасность мононуклеаров объясняется тем, что они способны изменять состав крови. Эти клетки являются распространителями инфекционных процессов, поэтому они способны вызвать серьезные проблемы. Если их уровень превышает 10% от числа лейкоцитов, это сигнализирует о том, что болезнь зашла слишком далеко и что пациенту необходимо срочное лечение.

    Заболевания с повышенным уровнем мононуклеаров

    Атипичные мононуклеары в общем анализе крови у взрослых повышаются при таких патологиях:

    • мононуклеоз, вызванный вирусом Эпштейн-Барра;
    • вирусные заболевания в острой форме;
    • вирус иммунодефицита;
    • иногда причиной повышенных мононуклеаров могут быть бактериальные болезни – воспаление легких эндокардит, туберкулез;
    • гельминтоз;
    • волчанка системная красная, васкулит;
    • индивидуальная непереносимость некоторых препаратов;
    • онкологические процессы;
    • анемия;
    • печеночные или почечные заболевания с присоединением явлений интоксикации;
    • пищевые и медикаментозные отравления.

    У ребенка повышение количества мононуклеаров бывает не только из-за развития мононуклеоза, но и по причине таких заболеваний:

    • опухолей;
    • аутоиммунных процессов;
    • патологических изменениях крови;
    • интоксикаций;
    • продолжительного приема определенных видов медикаментов.

    Лабораторные анализы

    Анализы крови у взрослых и детей, расшифровка их являются важным условием для определения количества мононуклеаров и назначения необходимого вида лечения. Процедура очень важна, так как дает возможность обнаружить патологические состояния человека на ранней стадии.

    Как проводится анализ на наличие таких клеток

    При диагностике анализируется изменение уровня патологических клеток. Для этого врач определяет нормальные эритроциты, подсчитывает все моноциты и лимфоциты. При условии наличия более 10% патологически измененных лейкоцитов считается, что человек болеет острой формой патологии.

    Часто специалисты обнаруживают от 5 до 10% измененных клеток.

    Изменение картины крови

    Количество измененных форменных элементов крови говорит о том, насколько агрессивна та или иная патология. Иногда количество вироцитов в крови может достигать 50%. Это бывает очень редко, когда человек впервые переносит инфекцию.

    Если количество мононуклеаров в общем анализе крови у ребенка значительно превышает число нормальных, то необходимо применять другие методы диагностики. Они позволяют определить состояние крови в сомнительных случаях. Иногда значительное появление атипичных клеток бывает в острую фазу заболевания. Для постановки правильного диагноза нужно повторно провести анализ – примерно через неделю.

    При острой фазе воспалительного процесса необходимо проверить уровень ферритина. Его концентрация повышается в острую фазу воспалительного процесса.

    Как правильно сдавать анализ крови на мононуклеары

    Наличие атипичных мононуклеаров в общем анализе может быть точно определено только в том случае, если процедура забора крови была осуществлена правильно. Материал для диагностической процедуры надо сдать утром, до утреннего приема еды. Запрещено употреблять не только любую еду, но и соки, чай.

    Перед анализом крови надо ограничить физическую активность. Лучше всего спокойно посидеть на протяжении 15 – 20 мин.

    Мононуклеоз

    Это заболевание вызывается вирусом Эпштейна-Барра. Заразиться им можно воздушно-капельным путем, посредством незащищенного интимного контакта. Мононуклеоз у ребенка может развиться из-за передачи возбудителя патологии через плаценту от матери. Заболевание активизируется при снижении сопротивления организма к вирусам, которые вызывают различные инфекционные патологии.

    Основные симптомы

    При мононуклеозе поражаются аденоиды, печень, селезенка, лимфоузлы. Характерные признаки болезни:

    • высокая температура тела;
    • боль во время глотания;
    • общая интоксикация;
    • появление налета на гландах;
    • ощущение заложенности носовой полости;
    • храп;
    • резкое увеличение лимфатических узлов в области шеи;
    • пожелтение кожи и склер;
    • увеличение печени, селезенки.

    Особенности у взрослых

    Клиническое течение патологии у лиц, старше 35 лет, встречается очень редко. Это связано с тем, что у таких людей уже сформирован специфический иммунитет. Иногда могут отмечаться симптомы, которые похожи на признаки острой респираторной инфекции: недомогание, заложенность носа, слабость, незначительное повышение температуры. Пациент может отмечать увеличение шейных групп лимфоузлов.

    Лизировать опухолевые мишени известна давно.

    Известно также, что мононуклеарные фагоциты, подобно другим клеткам системы иммунитета, могут оказывать как негативное, так и позитивное действие на рост опухоли.

    Изучение мононуклеарных фагоцитов по сравнению с клетками других популяций киллерных клеток имеет сложности, обусловленные не только их функциональной и фенотипической гетерогенностью, что присуще и другим клеткам, но и их различиями в происхождении и локализации.

    Объектом исследований в одних случаях являются моноциты периферической крови, в других - макрофаги, полученные в результате культивирования моноцитов (моноцитозависимые макрофаги), в третьих - резидентные макрофаги - макрофаги костного мозга и других тканей, головного мозга (клетки микроглии), печени (клетки Купфера), и в четвертых - макрофаги перитонеальной и плевральной полостей; очень редко исследуют дендритные клетки (ДК) -зависимые макрофаги.

    К сложностям, обусловленным многообразием клеток, которые объединены в систему мононуклерных моноцитов, присоединяются еще трудности получения и выделения резидентных макрофагов различной локализации. Эти трудности существенно компенсируются возможностью исследования макрофагов, инфильтрирующих опухоль, что достаточно широко используют в различных экспериментах.

    Нельзя не учитывать и еще одно важное обстоятельство, заключающееся в том, что оснований для заключения о полной и фенотипической идентичности этих различных мононуклерных фагоцитов нет, и это усложняет интерпретацию полученных результатов.

    Взаимодействие маркофагов и опухолевых клеток

    Изучение взаимодействия маркофагов и опухолевых клеток показало, что они не являются исключением и характер участия макрофагов во взаимодействии с опухолевыми клетками во многом зависит от свойств последних. Несколько неожиданным оказался еще один аспект этого взаимодействия - в отдельных случаях опухолевые клетки могут активировать макрофаги, выделяя различные стимулирующие факторы.

    Во многих случаях убедительные доказательства участия мононуклеарных фагоцитов в опухолевом процессе получены при изучении моноцитов и макрофагов, инфильтрирующих опухоль, а также на основании анализа эффективности различной иммунотерапии и других видов терапии. Поэтому целесообразно выделить эти два вопроса в самостоятельные разделы.

    Доказательства способности мононуклеарных фагоцитов лизировать опухолевые клетки получены при исследовании различных опухолей: меланомы, гепатоцеллюлярной карциномы, мезотелиомы, глиомы, карциномы молочной железы, желудка, кишечника, легкого, яичника и др.

    Несомненно важная роль мононуклеарных фагоцитов в противоопухолевой защите во многом связана и с их способностью активно участвовать в формировании локального иммунитета. Этот хорошо известный общебиологический факт в полной мере проявляется и в борьбе с опухолевыми клетками.

    Имеются доказательства того, что макрофаги занимают весьма существенное место и в борьбе с метастазами. Как известно, многие опухоли метастазируют в костный мозг. Появление отдельных опухолевых клеток, например карциномы органов желудочно-кишечного тракта, в костном мозгу может сопровождаться формированием метастазов, однако такие инвазивные клетки могут быть и уничтожены макрофагами.

    Было показано, что различные изолированные клетки костного мозга человека, мышей и крыс очень быстро убивают опухолевые клетки. При последующем изучении этого в высшей степени интересного вопроса было установлено, что лизис опухолевых клеток не связан ни с резидентными макрофагами, ни с естественными киллерами (ЕК) .

    Лизис в этих случаях осуществляют костномозговые гемопоэтические стволовые клетки (CD90), которые очень быстро дифференцируются в СD163-положительные клетки и осуществляют лизис как непосредственно контактируя с мишенями, так и продуцируя NO в результате активации iNOS. Из этих очень интересных данных следует, что способность гемопоэтических стволовых клеток быстро дифференцироваться в макрофаги позволяет им ограничивать экспансию микрометастазов в костный мозг. Это свидетельствует о роли макрофагов в локальной противоопухолевой защите.

    Роль макрофагов в формировании локальной противоопухолевой защиты иллюстрируют и данные экспериментов с использованием внутрибрюшинного, подкожного и внутривенного введения опухолевых клеток и последующего изучения цитотоксичности клеток, изолированных из сальника.

    В результате было показано, что макрофаги сальника мышей, иммунизированных как сингенными, так и аллогенными опухолями, проявляют цитотоксичность, которая предшествует цитотоксичности макрофагов перитонеальной полости, что наиболее четко проявляется в сингенной системе - факт, установленный только при внутрибрюшинном введении опухолевых клеток.

    Эти данные были положены в основу гипотезы о том, что иммунологические реакции в условиях интраперитонеального введения опухолевых клеток инициируются в сальнике, что впоследствии приводит к формированию локального противоопухолевого иммунитета.

    Несмотря на очевидные доказательства участия мононуклеарных фагоцитов как в системном, так и в локальном иммунологическом ответе, многое в этом вопросе остается неясным. Например, в высшей степени интересное и важное положение, высказанное S. Adamas еще 20 лет тому назад, что макрофаги выполняют различные функции на каждой стадии их активации и могут влиять на разные стадии опухолевого процесса, осталось практически не раскрытым.

    С большой степенью вероятности можно говорить о том, что только при таком подходе, как учет фенотипа, локализации, функциональной активности мононуклерных фагоцитов, стадии процесса и биологии опухолевой клетки может быть внесена ясность во многие, иногда и противоречивые вопросы.

    Подтверждением того, что мононуклерные фагоциты различного происхождения и локализации (а нередко и в пределах локализации в одном органе) различаются функционально и фенотипически, могут быть следующие факты.

    Соответствующие данные были получены сравнительно давно, но предметом интенсивного изучения этот вопрос становится лишь в последние годы. Еще в 1987 г. было показано, что в ответ на внутрибрюшинное введение клеток липосаркомы, во-первых, резко увеличивается количество макрофагов перитонеальной полости, а во-вторых, по характеру ответа макрофагов можно выделить четыре типа: макрофаги экссудата, резидентные макрофаги, резидентные макрофаги экссудата и пероксидазонегативные макрофаги.

    В последующие дни после перевивки перераспределяется состав мононуклеарных фагоцитов и увеличивается их количество в экссудате. Изучение цитотоксичности этих клеток после введения клеток липосаркомы показало, что в основном она была одинаковой, не коррелировала с каким-либо выявленным субтипом, за исключением макрофагов, негативных по пероксидазе, цитотоксичность которых различалась.

    Исследование цитотоксичности альвеолярных макрофагов (лаваж) в отношении клеток рака легкого до и после лечения IFNy показало, во-первых, что сравнительно небольшой процент общего пула макрофагов проявляет цитотоксичность, а во-вторых, цитотоксичность большого количества макрофагов не активировалась IFNy и лишь небольшой процент макрофагов независимо от активации IFNy лизировал опухолевые клетки и этот лизис был опосредован выделением TNFa и NO. Все приведенные факты свидетельствуют о гетерогенности популяции альвеолярных макрофагов.

    Сравнительная оценка цитотоксического и цитостатического действия мононуклеарных фагоцитов асцитической жидкости и моноцитов периферической крови больных раком легкого показала следуюидее. В асцитической жидкости было больше клеток с фенотипом CD14brightCD16+, чем в крови, большее количество клеток, экспрессирующих HLA-DR, а обработка IFNy активировала как цитостатическое, так и цитотоксическое действие именно CD14brightCD165+ макрофагов асцитической жидкости.

    Зависимость характера влияния мононуклеарных фагоцитов от локализации очень наглядно иллюстрируют опыты с изучением микроглии - макрофагов головного мозга, инфильтрирующих глиому, которая, как известно, относится к высокоагрессивным опухолям.

    Исследования показали, что основным хемоаттрактантом, который обеспечивает инфильтрацию глиомы крыс, является МСР-1. В опытах in vitro МСР-1 не влиял на рост опухоли, однако интрацеребральная трансфекция гена МСР-1 усиливала рост глиомы CNS-1 in vivo. Из этого следует вывод авторов о том, что МСР-1 необходим клеткам микроглии для их привлечения к глиоме, что в большей степени сопровождается усилением роста глиомы, чем ее ингибицией.

    Приведенные данные наглядно показывают, что локализация мононуклеарных моноцитов отражается на их функциональной активности, фенотипе и интенсивности ответа на стимуляцияю IFNy.

    В высшей степени интересным и важным представляется вопрос о том, каким образом биологические особенности опухолевых клеток влияют на макрофаги (супрессирующее влияние будет рассмотрено в третьей части монографии).

    Исследование цитотоксичности перитонеальных макрофагов хомячков в отношении клеток двух линий меланомы (пигментной и безпигментной) показало, что макрофаги осуществляли лизис клеток безпигментной меланомы, что сопровождалось увеличением продукции IL-10 и NO. Подобный эффект не зарегистрирован в отношении клеток пигментной меланомы. Было также показано, что особенности меланомы определяют и ее чувствительность к TNFa и IL-6.

    Много фактов, свидетельствующих о противоопухолевом эффекте NO, получены I. Fidler и соавторами.

    В частности, показано, что, во-первых, трансфекция гена iNOS в опухолевые клетки рака почек может снижать количество метастазов, во-вторых, показана обратная корреляция между продукцией эндогенного NO и способностью клеток меланомы линии К-1735 к выживаемости (у сингенных мышей) и развитию метастазов.

    Далее, изучение клеток различных линий меланом относительно их чувствительности к макрофагам под влиянием TGFP показало, что макрофаги лизируют клетки различных линий, однако наибольшей чувствительностью отличаются клетки линии B16BL6, в меньшей степени - B16F10 и еще меньше - B16F1. Таким образом, есть основания говорить о разной чувствительности, в частности клеток меланомы к лизису макрофагами. Выяснение причин такой неодинаковой чувствительности представляется весьма важным.

    Чувствительность клеток к действию макрофагов

    Заслуживают внимания и данные о динамике чувствительности нормальных мезотелиальных клеток и клеток мезотелиомы к действию макрофагов. Оказалось, что нормальные нетрансформированные клетки линий IAR-2 и Rat-1 были мало чувствительны к действию макрофагов; такая чувствительность была еще меньше выражена у трансформированных клеток.

    Некоторые опухолевые клетки могут экспрессировать хемокины и их рецепторы. Изучение последних на клетках различных форм рака желудка (диффузная и интестициальная) показало, что эти клетки различаются по характеру экспрессии хемокинов. Клетки обоих форм экспрессировали CXCL-8 (IL-8) с превалированием на клетках диффузной формы рака; CXCL-1 - исключительно клетки диффузной формы (опухолевые клетки экспрессировали и рецепторы хемокинов), а перитуморальные макрофаги - CXCL-10 и CXCL-9 - хемоаттрактанты для Т-лимфоцитов.

    Объяснением этих фактов может служить то, что взаимодействие опухолевых клеток с инфильтрирующими макрофагами индуцирует различные сигналы как в опухолевых клетках, так и в макрофагах. Такие сигналы могут активировать опухолевые клетки, которые приобретают способность выполнять роль хемоаттрактантов.

    В связи с этим становится понятным, почему высокую инвазивность приобретают именно клетки диффузного рака, которые практически постоянно экспрессируют CD8 и CXCL-1. Полученные данные позволяют предположить, что взаимодействие различных опухолевых клеток и макрофагов может иметь различные последствия.

    Более того, при взаимодействии макрофагов и опухолевых клеток экспрессия мРНК IL-8 наблюдалась исключительно в опухолевых клетках, что очень убедительно показано при исследовании макрофагов, инфильтрирующих ткань немелкоклеточного рака легкого человека; повышение уровня экспрессии в определенной степени связано с активацией NF-kappaB, которая увеличивается как в макрофагах, так и в опухолевых клетках.

    Особого внимания не только из-за своей новизны, но и вследствие неординарности результатов заслуживают данные экспериментов, из которых следует, что в ряде случаев опухолевые клетки могут индуцировать активность макрофагов. На модели глиомы было показано, что IFNP усиливает цитотоксичность макрофагов против клеток глиомы.

    Наряду с этим сокультивирование клеток глиомы с макрофагами позволяет выявить, что опухолевые клетки выделяют фактор, усиливающий цитотоксичность макрофагов. Не менее впечатляющими являются и данные о том, что сокультивирование различных опухолевых клеток (рак кишечника, матки) с макрофагами in vitro активирует макрофаги и это сопровождается не только увеличением продукции TRAIL, но и усилением экспрессии рецепторов смерти (DR-4 и DR-5) опухолевыми клетками.

    Нетрадиционными представляются и следующие данные. Уже отмечалось, что для привлечения макрофагов к участку развития опухоли, так же, как и других клеток, необходимо наличие хемоаттрактантов.

    Оказалось, что трансфекция гена GM-CSF в клетки карциномы кишечника KM12SM сопровождается накоплением макрофагов и нейтрофилов - результат секреции хемоаттрактанта макрофагов МСР-1, который усиливает привлечение мононуклеарных клеток, экспрессию адгезивных молекул макрофагами и усиление контактзависимого лизиса опухолевых клеток.

    Изучение взаимодействия опухолевых клеток и мононуклеарных фагоцитов (моноциты и моноцитозависимые макрофаги) на специально разработанной для этой цели модели дало возможность выявить, что такое совместное культивирование изменяет некоторые фенотипиче-ские особенности как опухолевых клеток, так и мононуклеарных фагоцитов. На моноцитах повышается уровень экспрессии CD16 (FcyRIII), CD54, CD68 и CD86, на некоторых опухолевых клетках - CD11a, CD58 и на всех взаимодействующих клетках - TNFaRII и HLA-DR (рис. 27).

    Рис. 27. Изменение фенотипических особенностей макрофагов/моноцитов и опухолевых клеток при их совместном культивировании

    Аналогичные изменения наблюдали и на моноцитозависимых макрофагах, однако при этом имели место и некоторые отличия, которые проявлялись в том, что только контакт с моноцитами (но не с моноцитозависимыми макрофагами) сопровождался усилением Fas/FasL взаимодействия.

    Эти данные указывают не только на возможность модификации иммунофенотипа, как мононуклеарных фагоцитов, так и опухолевых клеток в условиях их взаимодействия, но и еще раз подтверждают, что полной идентичности фенотипических особенностей мононуклеарных фагоцитов различной локализации нет.

    Следует обратить внимание еще на один факт, который имеет важное значение для проведения работ на разных экспериментальных моделях опухолевого процесса с использованием мышей различных линий, так как установлено, что макрофаги мышей различных линий различаются по способности продуцировать Н2O2 и метаболиты арахидоновой кислоты.

    А именно: макрофаги мышей линии SENAR более чувствительны к действию канцерогенов, в частности химических, и выделяют значительно меньше указанных продуктов, чем



    Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.