Основные стадии развития зародыша характеристика стадий эмбриогенеза. Основные этапы эмбриогенеза

Оплодотворение

Оплодотворением называется процесс слияния зрелых мужской (спер­матозоид) и женской (яйцеклетка) половых клеток, в результате чего возникает зигота, несущая генетическую информацию как отца, так и матери.

Процесс созревания мужских и женских половых клеток очень сложен. Спер­матогенез совершается в извитых семенных канальцах мужских гонад. Он заверша­ется в период половой зрелости образованием зрелых сперматозоидов, обладающих способностью к оплодотворению. Полному созреванию предшествует процесс редук­ционного деления, в результате которого в ядре сперматозоида содержится гаплоид­ный набор хромосом.

Сперматозоиды бывают двух видов: носители половых Х- и Y-хромосом. При слиянии с яйцеклеткой сперматозоида, являющегося носителем половой Х-хромо-сомы, из образующейся зиготы развивается эмбрион женского пола, при слиянии сперматозоида, имеющего половую Y-хромосому, возникает зародыш мужского пола (яйцеклетка всегда является носительницей половой Х-хромосомы).

Зрелый сперматозоид имеет длину до 50-60 мкм и состоит из головки, шейки и хвостовой части. Головка сперматозоида, имеющая овальную форму, содержит ядро, окруженное тонким слоем протоплазмы. Шейка имеет протоплазму, содержа­щую видоизмененную центросому, которая способствует процессу дробления опло­дотворенной яйцеклетки. Хвостик состоит из протоплазмы и выполняет двигатель­ные функции. В результате колебательных движений хвостовой части сперматозоиды способны совершать самостоятельные движения в половом тракте женщины со скоростью 2-3 мм/мин. Способность к движениям сперматозоиды получают после их контакта с секретом семенных пузырьков и предстательной железы. Такая смесь носит название семенной жидкости, или спермы. При половом сношении во влага­лище женщины изливается в среднем около 3-5 мл спермы, в которой содержится 300-500 млн сперматозоидов. Использование электронной микроскопии позволило установить весьма сложную структуру сперматозоида (рис. 3.1).

Семенная жидкость имеет сложный состав и содержит фруктозу, белковые вещества, протеазы, кислую фосфатазу, лимонную кислоту и биологически активные вещества - простагландины. Семенная жидкость обладает выраженной антигенной активностью, при этом антигены обнаружены как в самих сперматозоидах, так и в жидкой части спермы. Полагают, что число антигенных компонентов в семенной жидкости достигает 12. В процессе оплодотворения происходит нейтрализация анти­генов сперматозоидов.



Развитие яйцеклеток связано с ростом и развитием первичных фолликулов, находящихся в корковом слое яичников. Созревание яйцеклетки условно можно разделить на созревание ядра и созревание цитоплазмы. Под созреванием ядра понимают совокупность процессов, переводящих ядро из стадии диплотена I (или стадии герминативного пузырька) до метафазы второго мейотического деления. Созревание ядра не включает в себя завершение мейоза, так как только проникно­вение сперматозоида внутрь яйцеклетки вызывает завершение второго редукцион­ного деления.


Головка Тело Хвост

Рис.3.1. Строение сперматозоида человека (электронно-микроскопическая схема). 1 - акросома; 2 - ядро; 3 - шейка; 4 - митохондрии; 5 - осевые нити.


Рис. 3.2. Зрелая яйцеклетка, окру­женная клетками лучистого венца.


От периода наступления полового со­зревания до менопаузы у женщины в каждом менструальном цикле обычно созревает одна яйцеклетка. Овоцит первого порядка пре­вращается в овоцит второго порядка при от­щеплении первого полярного тельца. В мо­мент овуляции овоцит второго порядка ока­зывается блокированным на стадии мета-фазы второго мейотического деления. Со­зревание яйцеклеток стало известно в дета­лях благодаря возможности культивирова­ния яйцеклеток in vitro, что в настоящее время широко используют при экстракорпо­ральном оплодотворении.

Зрелая яйцеклетка состоит из ядра, ци­топлазмы, окружена блестящей оболочкой и клетками лучистого венца, представляющего собой остатки гранулезных клеток фоллику­ла (рис. 3.2). Женская половая клетка, как и мужская, обладает антигенными свойствами. Особенно богата различными антигенами ее блестящая оболочка.


Прежде чем анализировать механизмы оплодотворения, т.е. процесс слияния яйцеклетки со сперматозоидом, следует осветить вопросы транс­порта гамет. В первую очередь это касается продвижения сперматозоидов по каналам репродуктивной системы женщины. При нормальной эякуляции во влагалище попадает в среднем около 100 млн сперматозоидов, некоторые из которых имеют те или иные морфологические либо функциональные отклонения. Часть сперматозоидов, в том числе и неполноценных, остается во влагалище и подвергается фагоцитозу. Вместе со сперматозоидами во влагалище попадают и другие составные части спермы, при этом особая роль принадлежит простагландинам. Под их влиянием происходит актива­ция сократительной активности матки и маточных труб, что очень важно для нормального транспорта гамет.



Из влагалища, имеющего у здоровой женщины кислую среду (кислая


среда неблагоприятна для жизнедеятельности сперматозоидов), последние быстро поступают в цервикальную слизь, которая во время полового акта под влиянием сокращений мышц шейки матки выделяется из цервикального канала. Наличие слабощелочной реакции цервикальной слизи способствует повышению двигательной активности сперматозоидов.

Оптимальный состав цервикальной слизи формируется к моменту ову­ляции в основном под влиянием эстрогенных гормонов яичников. В этот период мицелии слизи располагаются в виде своеобразных цепочек, ориен­тированных по силовым линиям магнитного поля земли. Сперматозоиды продвигаются по мицелиям слизи по направлению к матке, но лишь при определенной архитектонике цепочек мицелл. Турбулентные движения спер­матозоидов наиболее выражены в пристеночных областях шейки матки, при этом часть сперматозоидов на некоторое время может депонироваться в криптах шейки матки, создавая тем самым своеобразный резерв спермы, откуда в дальнейшем может происходить дополнительное их поступление вверх по каналам репродуктивной системы.

В верхних отделах полового тракта женщины начинается процесс, на­зываемый капацитацией спермы, - приобретение ею благодаря сложным изменениям способности к оплодотворению. В результате капацитации сперматозоиды приобретают способность к акросомальной реакции. Поми­мо этого, капацитация выражается в изменениях движений хвостовых частей сперматозоидов (наличие сверхактивной подвижности). Тонкие механизмы капацитации до настоящего времени полностью не изучены. Время капаци­тации различно у разных сперматозоидов, что, по-видимому, является важ­ной приспособительной реакцией для процесса оплодотворения. Капацити-рованные сперматозоиды очень активны, однако продолжительность их жизни меньше, чем некапацитированных. Капацитированные сперматозои­ды обладают повышенной способностью пенетрировать ткани, что имеет решающее значение в процессе оплодотворения яйцеклетки.

Транспорт сперматозоидов в матку, а затем и в маточные трубы в основном обеспечивается сокращениями гладкой мускулатуры этих органов. Полагают также, что трубно-маточные сфинктеры являются своеобразными дозаторами поступления сперматозоидов из полости матки в просветы ма­точных труб.

Наряду с сократительной способностью маточных труб, которые нахо­дятся под сложным гормональным воздействием (эстрогены, андрогены, окситоцин), а также под влиянием простагландинов, большое значение в продвижении сперматозоидов, помимо их собственной высокой кинетичес­кой активности, принадлежит таким факторам, как движения микроворсин реснитчатого эпителия эндоцервикса и ток жидкости в просвете маточной трубы. Таким образом, перемещение сперматозоидов по каналам репродук­тивной системы женщины представляет собой чрезвычайно сложный много­компонентный процесс.

Результаты современных научных исследований свидетельствуют о на­личии двухфазности процесса транспорта сперматозоидов по маточным тру­бам. В первую (короткую) фазу сперматозоиды начинают быстро поступать в ампулу трубы. Эта фаза длится всего несколько минут и регулируется сократительной активностью матки и маточных труб. Данная фаза сменяется более длительной второй фазой, в течение которой сперматозоиды со зна­чительно меньшей скоростью транспортируются к месту оплодотворения.


В ампулярной части маточной трубы нормальное количество сперматозои­дов в длительной фазе транспорта сохраняется на определенном уровне благодаря непрерывному возмещению уходящих в брюшную полость спер­матозоидов за счет тех половых клеток, которые депонированы в нижних отделах полового тракта (крипты шейки матки и др.).

Большое значение в транспорте гамет и оплодотворении имеет так называемый захват яйцеклетки ампулярным отделом маточной трубы. Этот процесс заключается в том, что ампулярный отдел трубы своими фимбриями как бы накрывает яичник в том месте, где произошла овуляция; при этом значительно облегчается перемещение зрелой яйцеклетки в ампулу маточ­ной трубы. Механизм этого феномена окончательно еще не исследован.

Существенным является вопрос о выживаемости сперматозоидов в по­ловых путях женщины. Некоторые авторы полагают, что жизнеспособность спермы сохраняется в течение нескольких (до 5) дней. Однако следует учитывать, что сохранение подвижности сперматозоидов не обязательно свидетельствует об их оплодотворяющей способности.

А В наиболее благоприятных условиях, когда мужские половые клетки находятся в цервикальной слизи на фоне высокого содержания эстро­генов в организме, оплодотворяющая способность сперматозоидов дер­жится до 2 сут после эякуляции во влагалище. В связи с этим принято считать, что для достижения беременности оптимальная частота половых сношений в период до и после овуляции должна быть каждые 2 дня. При более частых половых сношениях фертильность спермы снижается.

Перед оплодотворением зрелая яйцеклетка со всех сторон окружена лучистым венцом (corona radiata). Отчетливо заметна блестящая оболочка (zona pellucida). Уже через несколько минут после разрыва фолликула (ову­ляции) яйцеклетка попадает в полость маточной трубы. Этому процессу способствует ряд факторов: "захват" ее фимбриями маточной трубы со стороны яичника, в котором произошла овуляция, направление тока фол­ликулярной жидкости при разрыве фолликула и др. Этим факторам принад­лежит очень важная роль в первоначальном транспорте яйцеклетки, которая лишена самостоятельной подвижности. Способность яйцеклетки к оплодо­творению в среднем составляет 24 ч. Современные методы диагностики (ультразвуковое исследование, лапароскопия) позволяют не только наблю­дать за процессом овуляции, но и фиксировать этот процесс на фотопленку.

Яйцеклетка, попавшая в ампулярный отдел маточной трубы, быстро окружается большим количеством сперматозоидов, являющихся носителями как Х-, так и Y-половых хромосом. Под микроскопом сперматозоиды с Х-хромосомой имеют несколько более крупные размеры, чем несущие Y-хромосому. Сперматозоиды, окружающие яйцеклетку, начинают пенетри-ровать в клетки лучистого венца. Процесс пенетрации обусловлен наличием ряда ферментов, которые содержатся как в головке сперматозоида, так и в трубной жидкости (рис. 3.3).

Сразу же после слияния мембран половых клеток происходит корти­кальная реакция яйцеклетки, являющаяся составной частью обеспечения блока полиспермии. После этого хромосомы зиготы вступают в первое митотическое деление, которое наступает через 24 ч после начала оплодо­творения. Ядро оплодотворенной яйцеклетки (зиготы) содержит диплоид-


Рис. 3.3. Пенетрация сперматозоидов в яйцеклетку в ампулярном отделе маточной трубы (схема).

ный набор хромосом (46). Таким образом, новый организм является носи­телем генетической информации обоих родителей.

После оплодотворения (через 24 ч) начинается дробление оплодотво­ренной яйцеклетки. Первоначально дробление имеет синхронный характер. Через 12 ч от начала возникновения 2 бластомеров возникают 4 бластомера и т.д. К 96 ч от момента слияния ядра сперматозоида с ядром яйцеклетки зародыш состоит из 16-32 бластомеров (стадия морулы). На этой стадии оплодотворенное яйцо (зигота) попадает в матку.

Поскольку дробящаяся яйцеклетка не обладает самостоятельной по­движностью, ее транспорт определяется взаимодействием сократительной активности маточной трубы (основной фактор), движениями цилиарного эпителия эндосальпинкса и капиллярным током жидкости в направлении от ампулярного конца маточной трубы к матке.

Транспорт яйцеклетки по маточной трубе находится под воздействием гормонов. Как известно, после овуляции на месте лопнувшего фолликула образуется новая эндокринная железа - желтое тело. Оно выделяет как прогестерон, так и эстрогенные гормоны. Именно этим двум половым гормонам принадлежит ведущая роль в обеспечении кинетики маточных труб. Под влиянием относительно низкого содержания прогестерона и более высокой концентрации в крови эстрогенов (что имеет место непосредствен­но после овуляции) повышается тонус ампулярно-перешеечного отдела трубы. В результате яйцеклетка задерживается в ампулярном отделе, где происходит ее оплодотворение и начинается процесс клеточного деления с образованием бластомеров. В дальнейшем происходит постепенное продви­жение оплодотворенной яйцеклетки по перешейку маточной трубы к матке. Под влиянием нарастающих концентраций прогестерона желтого тела со­кратительная функция маточных труб приобретает перистальтический ха­рактер, при этом волны сокращений направлены в сторону матки. Проис­ходит расслабление трубно-маточного соединения, и яйцеклетка из маточ­ной трубы попадает в полость матки.



Эндометрий


Рис. 3.4. Транспорт оплодотворенной яйцеклетки по маточной трубе вплоть до имплантации (схема).

1 - яйцеклетка в ампуле маточной трубы; 2 - оплодотворение; 3-7 - различные стадии образования бластомеров; 8 - морула; 9, 10 - бластоциста; 11 - импланта­ция.

Анализируя механизмы гормональной регуляции кинетики маточных труб, следует подчеркнуть, что только определенное соотношение между концентрациями в крови прогестерона и эстрогенов обеспечивает описанное выше четкое физиологическое взаимодействие различных отделов маточной трубы и своевременный транспорт плодного яйца в полость матки. Наряду с прогестероном и эстрогенами в осуществлении физиологической кинетики маточных труб в ранние сроки беременности известное значение отводится таким гормонам, как тестостерон и кортизол. Однако роль этих гормонов изучена в настоящее время еще недостаточно.

Имплантация плодного яйца. Проделав путь по маточной трубе в течение 4 сут, плодное яйцо на стадии морулы попадает в матку, где превращается в бластоцисту (рис. 3.4). Стадия бластоцисты характеризуется тем, что блас-томеры подвергаются определенным изменениям. Часть бластомеров, более крупных по своим размерам, образует так называемый эмбриобласт, из которого в дальнейшем развивается эмбрион. Другая часть клеток, более мелких и располагающихся по периферии плодного яйца, образует пита­тельную оболочку - трофобласт. В дальнейшем наиболее развитая часть трофобласта превращается в плаценту. В полости матки бластоциста при­ближается к месту имплантации (нидации) (рис. 3.5, а,б). Локализация имплантации имеет свои закономерности и, по-видимому, в значительной степени определяется местными особенностями эндометрия. Обычно блас­тоциста имплантируется в области передней или задней стенки матки.

Затем начинается погружение бластоцисты в эндометрий, который к этому времени превращается в децидуальную оболочку (рис. 3.5, в,г).



Рис. 3.5. Имплантация.

а - бластоциста перед имплантацией; б - начальный контакт бластоцисты с деци-дуальной оболочкой матки; в - погружение бластоцисты в децидуальную оболочку; г - завершение имплантации.


Децидуальная оболочка представляет собой видоизмененный функцио­нальный слой эндометрия. К моменту имплантации оплодотворенной яйце­клетки слизистая оболочка матки находится в секреторной фазе, железы пилообразно изменены и заполнены секретом, клетки стромы имеют округ­лый вид и содержат большое количество гликогена, липидов, нейтральных мукополисахаридов, солей и микроэлементов, ферментов и их ингибиторов, иммуноглобулинов и многие другие биологически активные соединения, необходимые для жизнедеятельности зародыша.

Процесс имплантации в первую очередь связан с гормональными фак­торами. Ведущая роль принадлежит половым (стероидным) гормонам. Во время беременности происходит развитие и активное функционирование желтого тела яичника, возникшего на месте лопнувшего фолликула. Желтое тело секретирует большое количество прогестерона и несколько меньшее - эстрогенов. Эти половые гормоны через специфические стероидные рецеп­торы, находящиеся в эндометрии, оказывают выраженное воздействие на секреторные преобразования слизистой оболочки матки и процессы ее де-цидуализации. Кроме стероидных, определенную роль в имплантации игра­ют и некоторые другие гормоны (пролактин, глюкокортикоиды).

Децидуальная ткань как своеобразный эндокринный орган имеет пря­мое отношение к имплантации и дальнейшим стадиям постимплантацион-ного развития зародыша. Установлено, что эндометрий женщины выраба­тывает иммунореактивный пролактин. Он начинает секретироваться с 9-го дня после овуляции, при этом во время беременности продукция тканевого пролактина значительно повышается, поэтому в настоящее время некоторые исследователи склонны рассматривать децидуальную ткань как своеобраз­ный эндокринный орган.

Процесс имплантации, который в среднем продолжается около 2 дней, сопровождается не только значительными изменениями клеточных элемен­тов желез и стромы эндометрия, но и выраженными гемодинамическими сдвигами местного характера. Вблизи места имплантации бластоцисты от­мечается расширение кровеносных сосудов и образование синусоидов, пред­ставляющих собой расширенные капилляры и венулы. Этим процессам принадлежит большая роль в процессах обмена между материнским орга­низмом и зародышем.

Ранний эмбриогенез

После имплантации происходит быстрое развитие как зародыша, так и его оболочек. На трофобласте образуются ворсинки, которые на ранних стадиях онтогенеза равномерно покрывают всю поверхность бластоцисты. Первичные ворсины являются бессосудистыми образованиями. Постепенно наружный слой трофобласта утрачивает клеточные границы, превращаясь в синцитий (симпласт). Внутренний слой трофобласта сохраняет клеточное строение и называется цитотрофобластом. Более подробно дальнейшие процессы диффе­ренциации трофобласта описаны в следующем разделе (см. раздел 3.2).

Одновременно с трофобластом развивается и эмбриобласт. Этот процесс особенно активизируется после имплантации. Клетки эмбриобласта диффе­ренцируются в два узелка: эктобластический и эндобластический. Вскоре в центральных частях этих узелков образуются полости, в результате чего эктобластический узелок превращается в эктобластический пузырек, а эн-


На ранних стадиях развития происходит и дифференциров-ка мезенхимы. С одной стороны клетки мезенхимы оттесняются на периферию - к трофобласту. С другой стороны происходит скопление мезенхимальных кле­ток вокруг амниотического и желточного пузырьков, а также около зародыша. В результате этого стенки пузырьков стано­вятся двухслойными, а сам заро­дыш дифференцируется в экто-, эндо- и мезодерму. Эти три за­родышевых листка служат исходным материалом для формирования в даль­нейшем всех органов и тканей эмбриона и плода.

По мере дальнейшего внутриутробного развития происходит быстрое увеличение размеров амниотического пузырька, который превращается в амниотическую полость. В полости наблюдается быстрое накопление про­зрачной жидкости (амниотическая жидкость), при этом стенка амниотичес­кого пузырька приближается к ворсинчатой оболочке и, наконец, сливается с ней. Зародыш начинает вворачиваться в полость амниона, а желточный пузырек атрофируется.

Одновременно с развитием плодных оболочек из каудального отдела первичной кишки зародыша образуется выпячивание - аллантоис. По ал-лантоису сосуды зародыша "подрастают" к ворсинчатой оболочке, врастая затем в каждую ворсину. В результате этого бессосудистый хорион васкуля-ризируется.

После завершения начальных этапов онтогенеза эмбрион окружен ам-ниотической жидкостью и тремя оболочками: децидуальной, ворсинчатой и водной.

Децидуальная оболочка представляет собой трансформирован­ный в связи с беременностью функциональный слой эндометрия. К моменту имплантации эндометрий находится в секреторной фазе. Он состоит из двух слоев: компактного и спонгиозного. Компактный слой, обращенный в по­лость матки, содержит выводные протоки маточных желез и клетки стромы эндометрия, превратившиеся во время беременности в децидуальные. Спон-гиозный слой в основном состоит из желез.

В процессе роста плодного яйца decidua parietalis и decidua capsularis растягиваются, истончаются и при­ближаются друг к другу. На 4-5-м месяце беременности плодное яйцо занимает уже всю полость матки, и decidua parietalis сливается с decidua capsularis. Наоборот, decidua basalis значительно гипертрофируется и пре­вращается в материнскую часть пла­центы. В этой части плаценты нахо­дятся многочисленные ворсины хо­риона, вокруг которых формируется межворсинчатое пространство.

Децидуальная оболочка является для плода питательным и защитным слоем: трофическая функция ее в ос­новном осуществляется на ранних этапах внутриутробного развития, за­щитная роль наиболее полно проявля­ется высокой фагоцитарной активнос­тью. Децидуальная ткань лизирует

микроорганизмы и инактивирует их токсины, принимает также участие в синтезе углеводов, липидов и белков. В ней происходит синтез пролактина и простагландинов. Таким образом, децидуальной оболочке принадлежит очень важная роль в имплантации и дальнейшем развитии эмбриона и плода.

Амнион (водная оболочка) обращена к плоду. Она выстилает плаценту и переходит на пуповину, сливаясь в области пупочного кольца с кожей плода. Макроскопически амнион представляет собой тонкую полу­прозрачную мембрану. В процессе эмбриогенеза амнион развивается из эктобластического пузырька. Из эктодермы формируется эпителий амниона, из мезодермы - соединительнотканная основа.

На ранних стадиях развития эпителий амниона представлен крупными полигональными клетками, с 3-го месяца беременности он становится ку­бическим. Эпителиальные клетки амниона содержат липиды, полисахариды,


протеины, фосфорные соединения, а также ряд ферментов, участвующих в процессах метаболизма и обмене стероидных гормонов.

Амнион вместе с гладким хорионом принимает активное участие в обмене околоплодных вод, а также в параплацентарном обмене. По своим физическим свойствам плодные оболочки отличаются друг от друга. Так как амниотическая оболочка очень плотная и выдерживает давление в несколько раз большее, чем гладкий хорион, в родах разрыв гладкого хориона наступает раньше, чем амниона.

ПЛАЦЕНТА

Плацента человека имеет гемохориальный тип строения. Этот тип плацен-тации характеризуется наличием непосредственного контакта материнской крови с хорионом вследствие нарушения целостности децидуальной оболоч­ки матки со вскрытием ее сосудов.

Возникновение гемохориальной плаценты в эволюции является высшей стадией. В ней отражены сложнейшие взаимоотношения функциональных систем матери и плода.

Развитие и функции плаценты

Основной частью плаценты являются ворсины хориона - производные тро-фобласта. На ранних этапах онтогенеза трофобласт образует протоплазма-тические выросты, состоящие из клеток цитотрофобласта (первичные вор­сины). Первичные ворсины не имеют сосудов, и поступление питательных веществ и кислорода к организму зародыша из окружающей их материнской крови происходит по законам относительно простых законов осмоса и диффузии. К концу 2-й недели беременности в первичные ворсины врастает соединительная ткань и образуются вторичные ворсины. Их основу состав­ляет соединительная ткань, а наружный покров представлен эпителием (трофобласт). Как первичные, так и вторичные ворсины равномерно рас­пределяются по поверхности плодного яйца.

Эпителий вторичных ворсин состоит из двух слоев: слоя цитотрофоб­ласта (слой Лангханса) и синцития (симпласта). Слой цитотрофобласта состоит из клеток округлой формы со светлой цитоплазмой. Ядра клеток крупные. В синцитии границы клеток практически неразличимы, цитоплаз­ма темная, зернистая, с щеточной каймой. Ядра относительно небольших размеров, шаровидной или овальной формы.

С 3-й недели развития зародыша начинается очень важный процесс развития плаценты, который заключается в васкуляризации ворсин и пре­вращении их в третичные, содержащие сосуды. Формирование сосудов пла­центы происходит как из ангиобластов зародыша, так и из пупочных сосу­дов, растущих из аллантоиса.

Сосуды аллантоиса врастают во вторичные ворсины, в результате чего каждая вторичная ворсина получает васкуляризацию. Так осуществляется важнейший процесс внутриутробного развития - васкуляризация хориона. Установление аллантоидного кровообращения обеспечивает интенсивный обмен между организмами плода и матери.


Превращение вторичных ворсин в третичные рассматривается как важнейший критический период эмбрионального развития, так как аллантоис обладает очень высокой чувствительностью к действию повреждающих факторов окружающей среды. Его повреждение сопро­вождается гибелью сосудов, в результате чего прекращается важней­ший процесс - васкуляризация хориона, а это в свою очередь приводит к гибели зародыша на самых ранних сроках.

На ранних стадиях внутриутробного развития ворсины хориона равно­мерно покрывают всю поверхность плодного яйца. Однако начиная со 2-го месяца онтогенеза на большей поверхности плодного яйца ворсины атро­фируются, в то же время пышно развиваются ворсины, обращенные к базальной части децидуальной оболочки. Так формируются гладкий и вет­вистый хорион.

Дальнейшее развитие и дифференцировка хориона характеризуются сле­дующими основными моментами. При сроке беременности 5-6 нед толщи­на синцитиотрофобласта превосходит толщину слоя Лангханса, а, начиная со срока 9-10 нед синцитиотрофобласт постепенно истончается и количе­ство ядер в нем увеличивается. На свободной поверхности синцитиотрофо­бласта, обращенной к межворсинчатому пространству, становятся хорошо заметными длинные тонкие цитоплазматические выросты (микроворсины), которые значительно увеличивают резорбционную поверхность плаценты. В начале II триместра беременности происходит интенсивное превращение цитотрофобласта в синцитий, в результате чего на многих участках слой Лангханса полностью исчезает.

В конце беременности в плаценте начинаются инволюционно-дистро­фические процессы, которые иногда называют старением плаценты. Из крови, циркулирующей в межворсинчатом пространстве, начинает выпадать фибрин (фибриноид), который откладывается преимущественно на поверх­ности ворсин. Выпадение этого вещества способствует процессам микро-тромбообразования и гибели отдельных участков эпителиального покрова ворсин. Ворсины, покрытые фибриноидом, в значительной степени выклю­чаются из активного обмена между организмами матери и плода.

Происходит выраженное истончение плацентарной мембраны с 25 мкм в начале беременности до 5 мкм в конце ее. Строма ворсин становится более волокнистой и гомогенной. Наблюдается некоторое утолщение эндотелия капилляров. В участках дистрофии нередко откладываются соли извести. Все эти изменения отражаются на основных функциях плаценты (дыхатель­ной, трофической, обменной, эндокринной и др.).

Наряду с процессами инволюции в плаценте на протяжении беремен­ности наблюдаются и явления противоположного свойства. Происходит увеличение молодых ворсин, которые в значительной мере компенсируют функцию утраченных. Однако развитие молодых ворсин лишь частично улучшает функцию плаценты в целом. В результате этого в конце беремен­ности наблюдается снижение функции плаценты.

Строение зрелой плаценты (рис. 3.8). Макроскопически зрелая плацента очень напоминает толстую мягкую лепешку. Масса плаценты составляет 500-600 г, диаметр 15-18 см, толщина 2-3 см. Плацента имеет две поверхности: материнскую, обращенную к стенке матки, и плодовую - в сторону плода.


Рис. 3.8. Внешний вид зрелой плаценты, а - материнская часть; б - плодовая часть.

Материнская поверхность плаценты имеет серовато-красный цвет и пред­ставляет собой остатки базальной части децидуальной оболочки.

Плодовая поверхность сверху покрыта блестящей амниотической оболоч­кой, под которой к хориону подходят сосуды, идущие от места прикрепле­ния пуповины к периферии плаценты. Основная часть плодовой плаценты представлена многочисленными ворсинами хориона, которые объединяются в дольчатые образования - котиледоны, или дольки. Их число достигает 15-20. Дольки плаценты образуются в результате разделения ворсин хорио­на перегородками (септами), исходящими из базальной пластинки. К каж­дой из таких долек подходит свой крупный сосуд.

Микроскопическое строение зрелой ворсины. Принято различать два вида ворсин: свободные и закрепляющие (якорные). Свобод­ные ворсины, а таких большинство, погружены в межворсинчатое простран­ство децидуальной оболочки и "плавают" в материнской крови. В противо­положность им якорные ворсины прикреплены к базальной децидуальной оболочке и обеспечивают фиксацию плаценты к стенке матки. В третьем периоде родов связь таких ворсин с децидуальной оболочкой нарушается и под влиянием маточных сокращений плацента отделяется от стенки матки.

При микроскопическом изучении строения зрелой ворсины удается дифференцировать следующие образования (рис. 3.9):

Синцитий, не имеющий четких клеточных границ;

Слой (или остатки) цитотрофобласта;

Строму ворсины;

Эндотелий капилляра, в просвете которого хорошо заметны элементы
крови плода.

При электронной микроскопии ворсин хориона было установлено, что синцитий имеет на своей поверхности многочисленные микроворсины, ко­торые значительно увеличивают обменную поверхность плаценты.

Маточно-плацентарное кровообращение. При наличии пла-


Кровоток в матке осущест­вляется с помощью 150-200 ма­теринских спиральных артерий, которые открываются в обшир­ное межворсинчатое простран­ство. Спиральные артерии имеют своеобразное строение, их стен­ки лишены мышечного слоя, а устья не способны сокращаться и расширяться.

Спиральные артерии обла­дают низким сосудистым сопро­тивлением току крови. В проти­воположность маточным артери­ям, в которых выраженное снижение сосудистого сопротивления наблюда­ется с 12-13 нед беременности, в спиральных артериях, как это было установлено с помощью допплерометрии, этот процесс имеет место уже с 6 нед беременности. Наиболее выраженное снижение сосудистого сопротив­ления в спиральных артериях наблюдается в 13-14 нед беременности, что морфологически отражает завершение процесса инвазии ворсин трофоблас-та в децидуальную оболочку.

Описанные особенности гемодинамики имеют очень большое значение в осуществлении бесперебойного транспорта артериальной крови от орга­низма матери к плоду. Излившаяся артериальная кровь омывает ворсины хориона, отдавая при этом в кровь плода кислород, необходимые питатель­ные вещества, многие гормоны, витамины, электролиты и другие химичес­кие вещества, а также микроэлементы, необходимые плоду для его правиль­ного роста и развития. Кровь, содержащая СО 2 и другие продукты метабо­лизма плода, изливается в венозные отверстия материнских вен, общее число которых превышает 180.

Кровоток в межворсинчатом пространстве в конце беременности доста­точно интенсивен и в среднем составляет 500-700 мл крови в минуту.

Особенности кровообращения в системе мать -плацента -плод. Артери­альные сосуды плаценты после отхождения от пуповины делятся радиально в соответствии с числом долек плаценты (котиледонов). В результате даль­нейшего разветвления артериальных сосудов в конечных ворсинах образу­ется сеть капилляров, кровь из которых собирается в венозную систему. Вены, в которых течет артериальная кровь, собираются в более крупные венозные стволы и наконец впадают в вену пуповины (рис. 3.10).





Рис. 3.10. Кровообращение в системе мать - плацента - плод.

1 - миометрий; 2 - свободные ворсины; 3 - якорная ворсина; 4 - децидуальная оболочка; 5 - межворсинчатое пространство; 6 - спиральные артерии; 7 - хориаль-ная пластинка; 8 - хориальный эпителий; 9 - амниотический эпителий; 10 -пу­повина; 11 - вена пуповины; 12 - артерии пуповины; 13 - отложение фибриноида.

Кровообращение в плаценте поддерживается сердечными сокращения­ми матери и плода. Важная роль в стабильности этого кровообращения также принадлежит механизмам саморегуляции маточно-плацентарного кровообращения.

Основные функции плаценты. Плацен

ЭМБРИОЛОГИЯ.

ЭМБРИОЛОГИЯ №1

Понятие прогенеза и эмбриогенеза. Периоды и основные стадии эмбриогенеза у человека. Половые клетки человека, их структурно- генетическая характеристика.

ЭМБРИОГЕНЕЗ –

ПРОГЕНЕЗ – период развития и созревания половых клеток – яйцеклеток и сперматозоидов, в результате в зрелых половых клетках возникает гаплоидный набор хромосом, формируются структуры, обеспечивающие их способность к оплодотворению и развитию нового организма.

ПОЛОВЫЕ КЛЕТКИ – ПРИЗНАКИ:

    Гаплоидный набор хромосом

    Измененная ядерно-цитоплазматическое отношение – отношение объема ядра и цитоплазма

    Изменен метаболизм клетки

    Клетки высоко дифференцированы (не способны делиться)

ЯЙЦЕКЛЕТКА (открыта Бером) – имеет оолемму, ооплазму (цитоплазму), ядро; органоиды развиты все за исключением центриолей, из включений преобладает желток.

ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ: ядро неактивно ни в отношении транскрипции, ни в отношении репликации, т.е. ведет себя пассивно; яйцеклетка накапливает ферменты, факторы и гликоген.

СТРУКТУРНЫЕ ОСОБЕННОСТИ: имеет кортикальный слой цитоплазмы – периферическая гиалоплазма с кортикальными гранулами (мукополисахариды, белки, ферменты); полярна – выделяют два полюса: анимальный (сосредоточены органоиды) и вегитативный (содержит < или >количество белка)

У человека маложелтковая, вторичноолиголецитальная, изолецитальная

Яйцеклетку окружают прозрачная (лецитальная) оболочка – zona pellucida (ее образуют Zp белки). Среди них есть Zp2 белок – препятствует полиспермии, Zp3 рецептор к сперматозоиду.

Яйцеклетка окружена фолликулярными клетками, которые доставляют к ней питание – формируют лучистый венец.

СПЕРМАТОЗОИД – выделяют четыре отдела: головка (содержит крупное ядро и акросому – видоизмененная лизосома), шейка(проксимальная центриоль), тело (митохондриальные спирали и дистальная центриоль), хвостик (представлен жгутиком)

Максимальная способность к оплодотворению до двух суток.

Направленная миграция сперматозоидов определяется хемотаксисом и реотаксисом, важными показателями при этом являются рН и слизь. Происходит капоцитация – под действием секретов женских половых путей сперматозоид приобретают оплодотворяющие способности.

Продвижение сперматозоида облегчают простогландины (действуют на оболочку маточных труб)

ЭМРИОЛОГИЯ №2

Основные стадии эмбриогенеза. Понятие оплодотворения. Характеристика оплодотворения у человека: морфология, необходимые условия. Понятие зиготы.

ЭМБРИОГЕНЕЗ – эмбриональное развитие человека. Продолжается 280 дней, делится на три периода: начальный (первая неделя развития), зародышевый (2-8 неделя развития – закладка основных органов), плодный (9неделя – до рождения).

Ранний эмбриогенез делится на стадии:

    ЗИГОТА – начало синтеза ДНК и белка

    ДРОБЛЕНИЕ – начало синтеза основных типов РНК

    МОРУЛА – клетки зародыша тотипотентны (взаимозаменяемы)

    БЛАСТОЦИСТА – происходит утрата тотипотентности и клетки детерминируются к образованию зародышевых и внезародышевых структур.

    ГАСТРУЛА – появляются зародышевые листки и стволовые клетки

    ОРГАНОГЕНЕЗ – из ткани формируются органы, идет формирование зачатков органов из клеточных клонов

ОПЛОДОТВОРЕНИЕ – слияние мужской и женской половых клеток, в результате чего восстанавливается диплоидный набор хромосом, характерный для данного вида и возникает качественно новая клетка – зигота (оплодотворенная яйцеклетка или одноклеточный зародыш)

Три стадии:

    ДИСТАНТНОЕ ВЗАИМОДЕЙСТВИЕ

    1. ПОЛОЖИТЕЛЬНЫЙ РЕОТАКСИС – движение сперматозоида против тока жидкости, выделяемой маточными трубами

      ХЕМОТКСИС – половые клетки выделяют гормоны (гамоны); ♀ - гиногамоны, у ♂ - андрогамоны.

      КАПОЦИТАЦИЯ – приобретение сперматозоидом оплодотворяющей способности под действием секрета маточных труб

    КОНТАКТНОЕ ВЗАИМОДЕЙСТВИЕ – сперматозоид раздвигает лучистый венец и образует канал в блестящей оболочке. Сперматозоид контактирует с рецептором (Zp3 белок) и начинается акросомная реакция – экзоцитоз содержимого акросомы для локального разрушения прозрачной оболочки. Внутри головки происходит: внутрь ионы Ca и Na, наружу H2. Результат – увеличение концентрации Ca запускает ряд процессов, ведущих к увеличению внутриклеточного pH, а это запускает акросомную реакцию. Результат акросомной реакции – образование канала в прозрачной оболочке, через который проходит сперматозоид. В оолемму встраивается мембрана сперматозоида.

    ТРЕТЬЯ СТАДИЯ

    1. АКТИВАЦИЯ ЯЙЦЕКЛЕТКИ – участок мембраны яйцеклетки, полученный от сперматозоида проницаем для ионов Na→изменяется потенциа клетки→ионы Ca выходят из клеточного депо в цитоплазму→экзоцитоз кортикальных гранул. Это приводит к образованию оболочки оплодотворения – изменение свойств блестящей оболочки, она препятствует полиспермии.

      СПЕРМАТОЗОИД ВНУТРИ ЯЙЦА – длится 12 часов, в результате образуется зигота. В этот момент ядра половых клеток называют пронуклеус. Их ядерный матрикс разрыхляется, оболочки исчезают – стадия синкариона. Пронуклеосы сближаются, в каждом из них происходит удвоение ДНК и образование хромосом, которые перемешиваются и выстраиваются в метафазную пластинку первого деления мейоза.

ЗНАЧЕНИЕ СПЕРМАТОЗОИДА – ½ хромосом в зиготе отцовские; митохондриальный геном отца; вносит сигнальный белок дробления; снимается блок мейоза; определяется генетический по организма.

Следствием оплодотворения являются изменение объема зиготы, деполяризация плазматической мембраны и образование оболочки оплодотворения.

ЭМБРИОЛОГИЯ №3

Понятие дробления зародыша. Характеристика дробления человека: типы дробления, время эмбриогенеза, продолжительность, условия. Строение зародыша на стадии имплантации у человека.

ДРОБЛЕНИЕ – последовательное митотическое деление зиготы на клетки (бластомеры) без роста дочерних клеток до размера материнской.

Разделившиеся клетки не растут, не расходятся, сохраняют диплоидность. Сокращается х митотический цикл за счет G1 и G2 периодов.

Суть дробления : образуется многоклеточный организм, восстанавливаются ядерно-цитоплазматические отношения.

У человека дробление: полное (материал зиготы дробится полностью), асинхронное (увеличение числа бластомеров происходит с нарушением геометрической прогрессии.

ВИДЫ БЛАСТОМЕРОВ: мелкие светлые и крупные темные

Через 30 часов проходит первая борозда дробления (образуются два бластомера)

Через 40 часов – 4 бластомера

Через 50-60 – образуется морула (тутовая ягода)

Мелкие светлые – по периферии, образуют трфобласт

Крупные темные – внутри, образуют эмбриобласт.

На 5 сутки образуется бластула (бластоциста). Ее особенность – бластоцель.

В начале из эмбриобласта образуется зародышевый узелок, а затем зародышевый щиток.

На 5 сутки бластоциста попадает в матку.

На 6-7 сутки протекает первая фаза гаструляции и происходит имплантация.

ИМПЛАНТАЦИЯ – внедрение зародыша в слизистую оболочку матки, две стадии:

    ПРИЛИПАНИЕ (адгезия) – клетки трофобласты начинают активно делиться и сливаясь образуют симпластотрофобласт – ворсину хориона.

    ПРОНИКНОВЕНИЕ (инвазия) – симпластотрофобласт выделяет протолитические ферменты, которые последовательно разрушают эпителий, соединительную ткань и кровеносные сосуды слизистой оболочки матки.

Первоначально зародыш питается разрушенными тканями матери – гистотрофный тип питания, а затем питается материнской кровью – гематрофный тип питания.

ЭМБРИОЛОГИЯ №4

Понятие и основные механизмы гаструляции. Типы гаструляции. Морфологическая и временная характеристика гаструляции у человека. Строение двухнедельного зародыша человека. Представления о критических периодах развития.

ГАСТРУЛЯЦИЯ – сложный процесс химических и морфогенетических изменений, сопровождающийся размножением, ростом, направленным перемещением и дифференцировкой клеток, в результате образуются зародышевые листки: наружный – эктодерма, внутренний – энтодерма, средний – мезодерма. Это источники зачатков тканей и органов, комплекса осевых органов.

СПОСОБЫ ГАСТРУЛЯЦИИ:

    ИНВАГИНАЦИЯ (впячивание) – дно подтягивается к крыше

    ЭПИБОЛИЯ (обрастание) – характерна для крупных клеток, переполненных желтком.

    ИММИГРАЦИЯ (выселение)

    ДЕЛЯМИНАЦИЯ (расщепление)

У человека протекает в две фазы:

    ДЕЛЯМИНАЦИЯ – зародышевый щиток (эмбриобласт) расщепляется на эпибласт (все зачатки кроме энтодермы) и гипобласт (энтодерма).

    ИММИГРАЦИЯ (на 14-17 сутки) – движение клеточных масс от головного и хвостового концов, затем они идут параллельно, образуя первичную полоску. Материал, который дремал в головном конце приходит в движение и идет навстречу первому потоку. Клеточный материал перестраивается и образуется первичный узелок с ямкой в центре. Через первичный (Гензеновский) узелок перемещается прехордальный зачаток и уходит в энтодерму (в головной конец зародыша); хордальный зачаток через первичный узелок ложится между экто- и энтодермой, образуя хорду. Мезодерма двумя крыльями подворачивается через края первичной полоски и уходит внутрь, располагаясь по бокам от хорды. Эктодерма всегда перемещается пластом, мезодерма – совершает амебообразные движения, энтодерма относительно неподвижна.

ФАКТОРЫ ВЫЗЫВАЮЩИЕ ГАСТРУЛЯЦИЮ:

    Неравномерный рост в различных областях зародыша

    Механический (бластомеры легко изменяют форму)

    Разная интенсивность поглощения воды

    Различная пластичность клеточных мембран

    Способность клеток к фагоцитозу

    Межклеточные взаимодействия

ЭМБРИОЛОГИЯ №5.

Понятие дифференцировки зародышевых листков. Представление об индукции как факторе, вызывающем дифференцировку. Дифференцировка зародышевых листков и образование зачатков тканей и органов у зародыша человека.

ДИФФЕРЕНЦИРОВКА ПЕРВИЧНОЙ ЭКТОДЕРМЫ:

    Зародышевая эктодерма

    • Нервная трубка (нейроциты и нейроглия сетчатки глаза и органа обоняния, нейроциты и нейроглия головного и спинного мозга)

      Нервный гребень и ганглиозные пластинки (нейроциты и нейроглия спинальных и вегетативных ганглиев, хромаффинная ткань и мозговое в-во надпочечников)

      Плакоды (эпителиальные элементы внутреннего уха)

      Кожная эктодерма (эпидермис и его производные, эпителий роговицы глаза, эпителий органов ротовой полости и его производные, эпителий анального отдела прямой кишки, эмаль и кутикула зуба, эпителиальная выстилка влагалища)

      Прехордальная пластинка (эпителий ротовой полости и пищевода, эпителий трахеи, бронхов и легких)

    Внезародышевая эктодерма (эпителий амниона и пупочного канатика)

ДИФФЕРЕНЦИРОВКА ПЕРВИЧНОЙ ЭНТОДЕРМЫ

    Зародышевая энтодерма

    • Энтодерма кишечной трубки (эпителий кишечника, желудка, печени,поджелудочной)

    Внезародышевая энтодерма

    • Желточная энтодерма (эпителий аллантоиса и желточного места)

ДИФФЕРЕНЦИРОВКА МЕЗОДЕРМЫ

    Зародышевая мезодерма

    • Сомиты

      • Миотом (скелетная мышечная ткань)

        Склеротом (хрящевая и костная ткань)

        Дерматом (соединительнотканная основа кожи)

    • Сегментная ножка нефрогонотома (эпителий гонад и семявыносящих путей и почек)

      Парамезонефральный проток (эпителиальная выстилка влагалища, матки, яйцеводов)

      Спланхнотом (поперечнополосатая мышечная ткань сердца, корковое в-во надпочечников, мезотелий)

      Мезенхима (микроглия, гладкая мышечная ткань, сосуды, соединительные ткани, к-ки крови и кроветворных органов)

    Внезародышевая мезодерма

    • Мезенхима (экзоцелломический эпителий, соединительная ткань желточного мешка амниона и хориона)

      Спланхнотом

      • Париетальный и висцеральный листки

Индукторы – возникают в определенных участках зародыша, обуславливают развитие других участков в определенном направлении.

ЭМБРИОЛОГИЯ №6.

Понятие и значение внезародышевых органов. Их появление в эволюции. Внезародышевые органы у человека. Образование, строение, значение амниона, желточного мешка, аллантоиса. Туловищная складка, ее образование, роль.

ВНЕЗАРОДЫШЕВЫЕ (провизорные, временные) ОРГАНЫ – развиваются в процессе эмбриогенеза вне тела зародыша, выполняют разнообразные функции, обеспечивающие рост и развитие самого зародыша.

Некоторые из этих органов, окружающих зародыш, называют зародышевыми оболочками. К этим органам относятся: амнион, желточный мешок, аллантоис, хорион, плацента

У человека эти органы закладываются рано. К 11 суткам развития начинается выселение мезодермы, которая заполняет полость бластоцисты. Из эпибласта выселяется внезародышевая мезодерма, которая прорастает перед эпибластом и образует закладку будущего амниотического пузырька. Затем по ней прорастает внезародышевая эктодерма. Из эпибласта выселяется мезенхима, которая прорастает перед гипобластом и образует закладку будущего желточного мешка. Позже по ней прорастает внезародышевая энтодерма и образуется желточный мешок.

АЛЛАНТОИС – развивается на 15 сутки эмбриогенеза как выпячивание стенки кишечной трубки. Проводит кровеносные сосуды к ворсинам хориона и, редуцируясь, войдет в состав пупочного канатика.

ХОРИОН – к концу 2 недели эмбриогенеза трофобласт начинает образовывать первичные ворсины хориона. В начале 3 недели к ним подрастает мезенхима и образуются вторичные ворсины хориона. Вскоре мезенхима дифференцируется в соединительную ткань и кровеносные сосуды, так формируются вторичные ворсины хориона, которые сформируют плодную часть плаценты. Ворсины хориона, прилежащие к основной отпадающей оболочке, интенсивно разрастаются и образуется ветвистый хорион, который соединяясь с основной отпадающей оболочкой образует плаценту.

ЖЕЛТОЧНЫЙ МЕШОК – принимает участие в кроветворении до 7-8 недели развития. Здесь образуются первичные половые клетки, позже идет его эволюция и он обнаруживается в составе пупочного канатика в виде узкой трубочки.

АМНИОН – достигает большого развития, создает благоприятную водную среду для развития зародыша

???????????????????????????????????????????????????????????????????????????????????????????????????

ЭМБРИОЛОГИЯ №7

Плацента. Ее значение, появление в эволюции. Типы плацент. Плацента человека: тип, строение, функции. Структура и значение плацентарного барьера.

ПЛАЦЕНТА – ворсины хориона прилежащие к основной отпадающей оболочке интенсивно разрастаются и образуется ветвистый хорион, который соединяется с основной отпадающей оболочкой образуя плаценту или детское место.

Зрелая плацента в диаметре 17-20 см. Толщина 2-4 см. Вес 500-600 г.

По строению дискоидальная, гемохориальная, ворсинковая.

ТИПЫ ПЛАЦЕНТ:

В связи с особенностями проникновения ворсин хориона в матку делят:

    эпителиальнохориальная – ворсины хориона не разрушают эпителий матки (лошади, свиньи)

    десмохориальная – ворсины хориона разрушают эпителий матки и контактируют с соединительной тканью (жвачные и парнокопытные)

    эндотелиохориальная – ворсины хориона разрушают эпителий матки, соединительную ткань и контактируют с эндотелием сосудов (хищники и ластонгие)

    гемохориальная – ворсины разрушают эпителий матки, соединительную ткань и стенки сосудов и непосредственно контактируют с материнской кровью (приматы, человек)

По характеру питания:

    Хорион поглощает из материнского организма белки, расщепляет их до аминокислот. Синтез эмбриоспецифических белков происходит в печени эмбриона. Сюда относятся эпителиохориальные и десмохориальные плаценты. Детеныши после рождения способны к самостоятельному питанию и передвижению.

    Хорион поглощает аминокислоты, синтезирует эмбриоспецифические белки (все остальные плаценты) детеныши после рождения сравнительно долго адаптируются.

СТРОЕНИЕ ПЛАЦЕНТЫ:

  1. Плодная часть

      АМНИОТИЧЕСКАЯ ОБОЛОЧКА – состоит из однослойного призматического эпителия и внезародышевой соединительной ткани.

      ХОРИАЛЬНАЯ ПЛАСТИНКА

      ХОРИАЛЬНЫЕ ВОРСИНЫ

Строму (основу) хориальной пластины и ворсин составляет рыхлая соединительная ткань (содержит аморфное вещество, аргирофтльные волокна, множество капилляров и клетки Кащенко-Ховбауэра – примитивные макрофаги). Сверху пластины покрыты трофобластным эпителием. В первом триместре покрыты цитотрофобластом, во втором покрыты цито- и симпластотрофобластом. В третьем – фибриноидом (гомогенная оксифильная масса, которая является продуктом сыворотки крови и распада трофобластных элементов). В ходе беременности ворсины сильно увеличиваются в размерах и возрастает их ветвление. Они собираются группами по 15-16 штук и формируют котиледоны (группа ворсин, связанная с помощью ствола ворсин с хориальной пластинкой). Выделяют якорные ворсины (соприкасаются с материнской тканью) и конечные ворсины (соприкасаются с материнской кровью). Образуется соединительная ткань: септы на границе между котиледонами.

  1. Материнская часть

      ОСНОВНАЯ ОТПАДАЮЩАЯ ОБОЛОЧКА (базальная пластина)

      СОЕДИНИТЕЛЬНОТКАННЫЕ СЕПТЫ

      ЛАКУНЫ, ЗАПОЛНЕННЫЕ МАТЕРИНСКОЙ КРОВЬЮ

В соединительнотканной слизистой оболочке появляются децидуальные клетки (те же соединительнотканные клетки крупных размеров и богатые гликогеном. Увеличивается просвет сосудов и гидратация слизистой, появляется исключительная фагоцитарная активность

ФУНКЦИИ ПЛАЦЕНТЫ:

    Дыхательная

    Трофическая

    • Синтез БЖУ

      Ионы Ca, Fe, Zn, Mg, Cu, P

      Депонирует и содержит витамины групп: A, B1, B2, B6, C, D, E

      Факторы свертывания крови

    Эндокринная – все гормоны синтезируются симпластотрофобластом. Они необходимы для роста и развития плода, готовят организм матери к родам и лактации.

Гормоны :

хорионический гонадотропин (поддержание желтого тела, выделяется с первых дней беременности, действует на желтое тело и стимулирует секрецию прогестеронов и эстрогенов, которые действуют на эндометрий, вызывая рост зародыша

хорионический соматомаммотропин (действует на молочную железу и желтое тело, вызывая изменения в организме матери)

кортиколиберин (определяет срок наступления родов)

    Иммунологическая защита

МЕХАНИЗМЫ ЗАЩИТЫ ПЛОДА: симпластотрофобласт – синтезирует белки тормозящие иммунный ответ матери, гормоны плаценты – угнетают материнские лимфоциты, фибриноид плаценты

    Барьерная (защитная) – выражена слабо, поэтому проникают наркотики, алкоголь, никотин, яды, лекарства (антибиотики, сульфаниламиды, анальгетики), вирусы, бактерии

ПЛАЦЕНТАРНЫЙ БАРЬЕР: барьер между кровью матери и плода. К барьеру подходят: цитотрофобласт с его базальной мембраной, соединительная ткань, строма ворсины, эндотелий кровеносного сосуда и его базальная мембрана. С материнской стороны кровь поступает в межворсинковое пространство через 30 спирально извитых артерий матки по давлением 70-80 мм рт. ст. Материнская кровь омывает ворсины, а затем скапливается на дне плацентарных отсеков, откуда уносится через краевой синус в маточные вены. Объем крови 150 мл.

ЭМБРИОЛОГИЯ №8

Понятие и значение плацентации. Плацентация у человека: временная и морфологическая характеристика. Тип и строение сформированной плаценты.


Эмбриогенез (греч. embryon - зародыш, genesis - развитие) - ранний период индивидуального развития организма от момента оплодотворения (зачатия) до рождения, является начальным этапом онтогенеза (греч. ontos - существо, genesis - развитие), процесса индивидуального развития организма от зачатия до смерти.

Развитие любого организма начинается в результате слияния двух половых клеток (гамет), мужской и женской. Все клетки тела, несмотря на различия в строении и выполняемых функциях, объединяет одно - единая генетическая информация, хранящаяся в ядре каждой клетки, единый двойной набор хромосом (кроме узкоспециализированных клеток крови - эритроцитов, которые не имеют ядра). То есть, все соматические (сома - тело) клетки диплоидны и содержат двойной набор хромосом - 2 n, и лишь половые клетки (гаметы), формирующиеся в специализированных половых железах (семенниках и яичниках), содержат одинарный набор хромосом - 1 n.

При слиянии половых клеток образуется клетка - зигота, в которой восстанавливается двойной набор хромосом. Напомним, что в ядре клетки человека содержится 46 хромосом, соответственно половые клетки имеют 23 хромосомы

Образовавшаяся зигота начинает делиться. I этап деления зиготы называется дроблением, в результате которого образуется многоклеточная структура морула (тутовая ягода). Цитоплазма распределяется между клетками неравномерно, клетки нижней половины морулы крупнее, чем верхней. По объему морула сравнима с объемом зиготы.

На II этапе деления, в результате перераспределения клеток, образуется однослойный зародыш - бластула, состоящий из одного слоя клеток и полости (бластоцель). Клетки бластулы различаются между собой по размерам.

На III этапе, клетки нижнего полюса как бы впячиваются (инвагинируют) вовнутрь, и образуется двухслойный зародыш - гаструла, состоящий из наружного слоя клеток - эктодермы и внутреннего слоя клеток - энтодермы.

Очень скоро, между I и II слоями клеток формируется, в результате деления клеток, еще один слой клеток, средний - мезодерма, и зародыш становится трехслойным. На этом завершается стадия гаструлы.

Из этих трех слоев клеток (их называют зародышевыми слоями) формируются ткани и органы будущего организма. Из эктодермы развивается покровная и нервная ткань, из мезодермы - скелет, мышцы, кровеносная система, половые органы, органы выделения, из энтодермы - органы дыхания, питания, печень, поджелудочная железа. Многие органы формируются из нескольких зародышевых слоев.

Эмбриогенез включает в себя процессы с момента оплодотворения до рождения..

Развитие человеческого организма начинается после оплодотворения женской половой клетки – яйца (ovium) мужской – сперматозоидом (spermatozoon, spermium).

Детальное изучение развития человеческого зародыша (эмбриона) составляет предмет эмбриологии. Здесь мы ограничимся лишь общим обзором развития зародыша (эмбриогенеза), что необходимо для понимания телосложения человека.

Эмбриогенез всех позвоночных, в том числе и человека, можно разделить на три периода.

1. Дробление: оплодотворенное яйцо, spermovium, или зигота последовательно делится на клетки (2,4,8,16 и так далее) в результате чего сначала образуется плотный многоклеточный шар, морула, а затем однослойный пузырек – бластула, которая содержит в середине первичную полость, бластоцель. Длительность этого периода – 7 дней.

2. Гаструляция заключается в превращении однослойного зародыша в двох-, а позже трехслойный – гаструлу. Первые два слоя клеток называются зародышевыми листками: внешний эктодерма и внутренний энтодерма (до двух недель после оплодотворения), а возникающий позже между ними третий, средний, слой получает название среднего зародышевого листка - мезодермы. Вторым важным результатом гаструляции у всех хордовых является возникновение осевого комплекса зачатков: на дорсальной (спинной) стороне энтодермы возникает зачаток спинной струны, хорды, а на вентральной (брюшной) ее стороне – зачаток кишечной энтодермы; на дорзальной стороне зародыша, по средней линии его из эктодермы выделяется нервная пластинка – зачаток нервной ситеми, а остальная эктодерма идет на построение эпидермиса кожи и потому называется кожной эктодермой.

В дальнейшем зародыш растет в длину и превращается в цилиндрическое образование с головным (краниальним) и хвостовым каудальным концами. Этот период длится до конца третьей недели после оплодотворения.

3. Органогенез и гистогенез: нервная пластинка погружается под эктодерму и превращается в нервную трубку, которая состоит из отдельных сегментов – невротомов, – и дает начало развитию нервной системы. Мезодермальные зачатки отшнуровываются от энтодермы первичной кишки и образуют парной ряд метамерно размещенных мешков, которые, разрастаясь по бокам от тела зародыша, делятся каждый на два отдела: спинной, что лежит по бокам от хорды и нервной трубки, и брюшной, что лежит по бокам от кишки. Спинные отделы мезодермы образуют первичные сегменты тела – сомиты, каждый из которых в свою очередь делится на склеротом, который дает начало скелету и миотом, из которого развивается мускулатура. Из сомита (на боковой его стороне) выделяется также кожный сегмент – дерматом. Брюшные отделы мезодермы, которые называются спланхнотомами, образуют парные мешки, которые содержат вторичную полость тела.

Кишечная энтодерма, которая осталась после обособления хорды и мезодермы, образует вторичную кишку – основание для развития внутренних органов. В последующем закладываются все органы тела, материалом для построения которых служат три зародышевых листка.

1. Из внешнего зародышевого листка, эктодермы, развиваются:

а) эпидермис кожи и его производные (волосы, ногти, кожные железы);

б) эпителий слизистой оболочки носа, рта и заднего прохода;

в) нервная система и эпителий органов чувств.

2. Из внутреннего зародышевого листка, энтодермы, развивается эпителий слизистой большей части пищеварительного тракта со всеми принадлежащими сюда железистыми структурами, большей части дыхательных органов, а также эпителий щитовидной и зобной желез.

3. Из среднего зародышевого листка, мезодермы, развивается мускулатура скелета, мезотелий облочек серозных полостей с зачатками половых желез и почек.

Кроме того, из спинных сегментов мезодермы возникает эмбриональная соединительная ткань, мезенхима, которая дает все виды соединительной ткани, в том числе хрящевую и костную. Так как сначала мезенхима проводит питательные вещества к разным участкам зародыша, выполняя трофическую функцию, то позже из нее развиваются кровь, лимфа, кровеносные сосуды, лимфатические узлы, селезенка.

Кроме развития самого зародыша, необходимо учитывать также образование внезародышевых частей, с помощью которых эмбрион получает необходимые для его жизни питательные вещества.

В многоклеточном плотном шаре выделяется внутренний зародышевый узелок, ембриобласт, и внешний слой клеток, который играет важную роль в питании зародыша и потому называется трофобластом. С помощью трофобласта зародыш проникает в толщу слизистой оболочки матки (вживление), и здесь начинается образование особенного органа, с помощью которого устанавливается связь зародыша с телом матери и осуществляется его питание. Этот орган называется детским местом, пометом, или плацентой. Млекопитающие, которые имеют плаценту называются плацентарными. Рядом с образованием плаценты идет процесс обособления зародыша, который развивается, от внезародышевых частей в результате возникновения так называемой туловищной складки, которая, вдаваясь гребнем к середине, будто отшнуровывает кольцом тело зародыша от внезародышевых частей. При этом, однако, сохраняется соединение с плацентой с помощью пупочного стебля, который дальше превращается в пупочный канатик. На ранних стадиях развития в последнем проходит желточная протока, которая соединяет кишку с ее выпячиванием в внезародышевый участок, – желточный мешок. У позвоночных, которые не имеют плаценты желточный мешок содержит питательный материал яйца – желток и является важным органом, через который осуществляется питание зародыша.

У человека желточный мешок хотя и возникает, но заметную роль в развитии зародыша не играет и после всасывания его содержимого постепенно редуцируется. В пупочном канатике проходят также пупочные (плацентарные) сосуды, через которые течет кровь от плаценты в тело зародыша и назад. Они развиваются из мезодермы мочевого мешка, или алантоиса, который выпирается из вентральной стенки кишки и выходит из тела зародыша через пупочное отверстие во внезародышевую часть. У человека из части алантоиса, что содержится в середине тела зародыша, образуется часть мочевого пузыря, а из его сосудов образуются пупочные кровеносные сосуды. Зародыш, который развивается, покрыт двумя зародышевыми оболочками. Внутренняя оболочка, амнион, образует объемитстий мешок, который наполнен белковой жидкостью и образует жидкую среду для зародыша, через что мешок называют водной оболочкой. Весь зародыш вместе с амниотичным и желточным мешками окружен внешней оболочкой (в состав которой входит и трофобласт). Эта оболочка, имея ворсинки, называется ворсинчатой, или хорион. Хорион выполняет трофическую, дыхательную, выделительную и барьерную функции.

13. В отличие от мхов, у папоротников, хвощей и плаунов в цикле разви тия преобладает спорофит - листостебельное растение. Представители этих трех групп растений имеют листья, стебли и корни. У большинства из них имеются подземные корневища с видоизмененными листьями и придаточными корнями. Современные хвощи, плауны и папоротники - в основном травянистые растения. Только в тропиках и субтропиках рас тут древовидные папоротники. Однако в древние эпохи - 200-350 млн лет назад эти группы растений были представлены древовидными форма ми и составляли дремучие леса, давшие начало крупнейшим каменно

угольным отложениям мира (Донбасс, Кузбасс и др.).

Каковы особенности строения плаунов, хвощей и папоротников?

Рассмотрим особенности плаунов, хвощей и папоротников. Современные плауновидные - многолетние, обычно вечнозеленые тра вы. Самый известный представитель плауновидных - плаун обыкновен ный, распространенный в средней полосе России в сыроватых еловых и

сосновых лесах. Это растение с гибким разветвленным стеблем, стелющим ся по земле. Листья мелкие, расположены на стебле по спирали. В конце лета на боковых веточках появляются обычно два спороносных колоска. Каждый колосок образован мелкими тонкими видоизмененными листья ми, которые называются спорофиллами. В основании спорофиллов распо ложены спорангии, где формируются споры. Хвощи, или хвощевидные, легко отличить по членистому строению стеблей: у них ярко выражено чередование узлов и междоузлий. Листья на стебле располагаются мутовками (по несколько штук в узле), окружая стебель. На верхушках стеблей формируются спороносные колоски, в ко торых созревают споры. У некоторых видов, например у хвоща полевого, стебли бывают двух типов: спороносные (буровато розовые, развиваются весной и после спороношения отмирают) и вегетативные (появляются летом от того же самого корневища). Папоротниковидные представлены в природе многолетними травами, лианами, деревьями и эпифитами, поселяющимися на стволах деревьев. У папоротников крупные листья; молодые обычно свернуты в виде улит ки. Папоротники нашей страны имеют корневища. Спорангии у них располагаются на нижней стороне листа и собраны в кучки - их называ ют сорусами. У вымерших папоротников спорангии были одиночными. На территории нашей страны растут папоротники орляк обыкновенный, щи товник мужской, кочедыжник женский, многоножка обыкновенная и дру гие виды.

В чем особенность развития папоротников, хвощей и плаунов?

Размножение у всех трех групп высших споровых растений происхо дит по одной схеме. Рассмотрим его на примере папоротника. На нижней стороне листа взрослого растения развиваются спорангии со спо рами. Попадая в благоприятные условия, спора прорастает и дает начало гаметофиту. Он имеет вид маленькой пластинки с ризоидами и называет ся заростком. На заростке развиваются мужские и женские гаметангии с

половыми клетками - яйцеклетками и сперматозоидами. После оплодо творения, которое происходит при наличии воды, из зиготы сначала раз вивается зародыш, а потом и взрослое растение - спорофит. Таким образом, у плаунов, хвощей и папоротников имеет место чере дование полового поколения (заросток - гаметофит) и бесполого (взрос

лое растение - спорофит).

14. Послезародышевое развитие: прямое и непрямое. Причины ослабления конкуренции между родителями и потомством при непрямом развитии.

1. Индивидуальное развитие организма (онтогенез) - период жизни, который при половом размножении начинается с образования зиготы, характеризуется необратимыми изменениями (увеличением массы, размеров, появлением новых тканей и органов) и завершается смертью.

2. Зародышевый (эмбриональный) и послезаро-дышевый (постэмбриональный) периоды индивидуального развития организма.

3. Послезародышевое развитие (приходит на смену зародышевому) - период от рождения или выхода зародыша из яйца до смерти. Различные пути послезародышевого развития животных - прямое и непрямое:

1) прямое развитие - рождение потомства, внешне похожего на взрослый организм. Примеры: развитие рыб, пресмыкающихся, птиц, млекопитающих, некоторых видов насекомых. Так, малек рыбы похож на взрослую рыбу, утенок на утку, котенок на кошку;

2) непрямое развитие - рождение или выход из яйца потомства, отличающегося от взрослого организма по морфологическим признакам, образу жизни (типу питания, характеру передвижения). Пример: из яиц майского жука появляются червеобразные личинки, живут в почве и питаются корнями в отличие от взрослого жука (живет на дереве, питается листьями).

Стадии непрямого развития насекомых: яйцо, личинка, куколка, взрослая особь. Особенности жизни животных на стадии яйца и куколки - они неподвижны. Активный образ жизни личинки и взрослого организма, разные условия обитания, использование разной пищи.

4. Значение непрямого развития - ослабление конкуренции между родителями и потомством, так как они поедают разную пищу, у них разные места обитания. Непрямое развитие - важное приспособление, возникшее в процессе эволюции. Оно способствует ослаблению борьбы за существование между родителями и потомством, выживанию животных на ранних стадиях послезародышевого развития.

Общая характеристика. Первые голосеменные появились в конце девонского периода около 350 млн. лет назад; вероятно, они произошли от древних папоротниковидных, вымерших в начале каменноугольного периода. В мезозойскую эру - эпоху горообразования, поднятия материков и иссушения климата - голосеменные достигли расцвета, но уже с середины мелового периода уступили свое господствующее положение покрытосеменным.

Отдел современных голосеменных насчитывает более 700 видов. Несмотря на относительно малую численность видов, голосеменные завоевали почти весь земной шар. В умеренных широтах Северного полушария они на огромных пространствах образуют хвойные леса, называемые тайгой.

Современные голосеменные представлены преимущественно деревьями, значительно реже - кустарниками и очень редко -лианами; травянистых растений среди них нет. Листья голосеменных значительно отличаются от других групп растений не только по форме и размерам, но и по морфологии и анатомии. У большинства видов они игловидные (хвоя) или чешуевидные; у отдельных представителей они крупные (например, у вельвичии удивительной их длина достигает 2-3 м), перисторассеченные, двулопастные и др. Листья располагаются поодиночке, по два или несколько в пучках.

Подавляющее большинство голосеменных - вечнозеленые, одно- или двудомные растения с хорошо развитыми стеблем и корневой системой, образованной главным и боковым корнями. Расселяются они семенами, которые формируются из семязачатков. Семязачатки голые (отсюда название отдела), расположены на мегаспорофиллах или на семенных чешуях, собранных в женские шишки.

В цикле развития голосеменных наблюдается последовательная смена двух поколений - спорофита и гаметофита с господством спорофита. Гаметофиты сильно редуцированы, причем мужские гаметофиты голо- и покрытосеменных растений не имеют антеридиев, чем резко отличаются от всех разноспоровых бессеменных растений.

Голосеменные включают шесть классов, два из которых полностью исчезли, а остальные представлены ныне живущими растениями. Наиболее сохранившейся и самой многочисленной группой голосеменных является класс Хвойные, насчитывающий не менее 560 видов, образующих леса на обширных пространствах Северной Евразии и Северной Америки. Наибольшее число видов сосны, ели, лиственницы встречается у побережий Тихого океана.

Класс Хвойные. Все хвойные - вечнозеленые, реже листопадные (например, лиственница) деревья или кустарники с игольчатыми или чешуевидными {например, у кипариса) листьями. Игловидные листья (хвоя) плотные, кожистые и жесткие, покрыты толстым слоем кутикулы. Устьица погружены в углубления, заполненные воском. Все эти особенности строения листьев обеспечивают хорошее приспособление хвойных к произрастанию как в засушливых, так и в холодных местообитаниях.

У хвойных прямостоячие стволы, покрытые чешуйчатой корой. На поперечном разрезе стебля хорошо видны развитая древесина и менее развитые кора и сердцевина. Ксилема хвойных на 90-95% образована трахеидами. Шишки хвойных раздельнополые; растения - чаще однодомные, реже - двудомные.

Наиболее широко распространенными представителями хвойных в Беларуси и России являются сосна обыкновенная и ель обыкновенная, или европейская. Их строение, размножение, чередование поколений в цикле развития отражает характерные особенности всех хвойных.

Сосна обыкновенная -однодомное растение (рис. 9.3). В мае у основания молодых побегов сосны образуются пучки зеленовато-желтых мужских шишек длиной 4-6 мм и диаметром 3-4 мм. На оси такой шишки расположены многослойные чешуйчатые листочки, или микроспорофиллы. На нижней поверхности микроспорофиллов находятся два микроспорангия - пыльцевых мешка, в которых образуется пыльца. Каждое пыльцевое зерно снабжено двумя воздушными мешками, что облегчает перенос пыльцы ветром. В пыльцевом зерне имеются две клетки, одна из которых впоследствии, при попадании на семязачаток, формирует пыльцевую трубку, другая после деления образует два спермия.

На других побегах того же растения образуются женские шишки красноватого цвета. На их главной оси располагаются мелкие прозрачные кроющие чешуйки, в пазухах которых сидят крупные толстые, впоследствии одревесневающие чешуи. На верхней стороне этих чешуй расположено по два семязачатка, в каждом из которых развивается женский гаметофит - эндосперм с двумя архегониями с крупной яйцеклеткой в каждом из них. На верхушке семязачатка, снаружи защищенного интегументом, имеется отверстие - пыльцевход, или микропиле.

Поздней весной или в начале лета созревшая пыльца разносится ветром и попадает на семязачаток. Через микропиле пыльца втягивается внутрь семязачатка, где и прорастает в пыльцевую трубку, которая проникает к архегониям. Образовавшиеся к этому времени два спермия по пыльцевой трубке попадают к архегониям. Затем один из спермиев сливается с яйцеклеткой, а другой отмирает. Из оплодотворенной яйцеклетки (зиготы) формируется зародыш семени, а семязачаток превращается в семя. Семена у сосны созревают на второй год, высыпаются из шишек и, подхваченные животными или ветром, переносятся на значительные расстояния.

По своему значению в биосфере и роли в хозяйственной деятельности человека хвойные занимают второе место после покрытосеменных, далеко превосходя все остальные группы высших растений.

Они помогают решать огромные водоохранные и ландшафтные задачи, служат важнейшим источником древесины, сырья для получения канифоли, скипидара, спирта, бальзамов, эфирных масел для парфюмерной промышленности, лекарственных и других ценных веществ. Некоторые хвойные культивируются как декоративные (пихты, туи, кипарисы, кедры и др.). Семена ряда сосен (сибирской, корейской, итальянской) употребляются в пищу, из них также получают масло.

Представители других классов голосеменных (саговниковые, гнетовые, гинкговые) встречаются значительно реже и менее известны, чем хвойные. Однако почти все виды саговниковых декоративны и пользуются широкой популярностью у садовников многих стран. Вечнозеленые безлистные невысокие кустарники эфедры (класс гнетовых) служат источником сырья для получения алкалоида эфедрина, который применяется как средство, возбуждающее центральную нервную систему, а также при лечении заболеваний аллергического характера.

16. Радиальная симметрия - форма симметрии, при которой тело (или фигура) совпадает само с собой при вращении объекта вокруг определённой точки или прямой. Часто эта точка совпадает с центром симметрии объекта, то есть той точкой, в которой пересекается бесконечное количество осей двусторонней симметрии. Радиальной симметрией обладают такие геометрические объекты, как круг, шар, цилиндр или конус.

В биологии о радиальной симметрии говорят, когда через трёхмерное существо проходят одна или более осей симметрии. При этом радиальносимметричные животные могут и не иметь плоскостей симметрии. Так, у сифонофоры Velella имеется ось симметрии второго порядка и нет плоскостей симметрии

Обычно через ось симметрии проходят две или более плоскости симметрии. Эти плоскости пересекаются по прямой - оси симметрии. Если животное будет вращаться вокруг этой оси на определённый градус, то оно будет отображаться само на себе (совпадать само с собой).

Таких осей симметрии может быть несколько (полиаксонная симметрия) или одна (монаксонная симметрия). Полиаксонная симметрия распространена среди протистов (например, радиолярий).

Как правило, у многоклеточных животных два конца (полюса) единственной оси симметрии неравноценны (например, у медуз на одном полюсе (оральном) находится рот, а на противоположном (аборальном) - верхушка колокола. Такая симметрия (вариант радиальной симметрии) в сравнительной анатомии называется одноосно-гетеропольной. В двухмерной проекции радиальная симметрия может сохраняться, если ось симметрии направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения.

Радиальная симметрия характерна для многих стрекающих, а также для большинства иглокожих. Среди них встречается так называемая пентасимметрия, базирующаяся на пяти плоскостях симметрии. У иглокожих радиальная симметрия вторична: их личинки двустороннесимметричны, а у взрослых животных наружная радиальная симметрия нарушается наличием мадрепоровой пластинки.

Кроме типичной радиальной симметрии существует двулучевая радиальная симметрия (две плоскости симметрии, к примеру, у гребневиков). Если плоскость симметрии только одна, то симметрия билатеральная (такую симметрию имеют животные из группы Bilateria).

У цветковых растений часто встречаются радиальносимметричные цветки: 3 плоскости симметрии (водокрас лягушачий), 4 плоскости симметрии (лапчатка прямая), 5 плоскостей симметрии (колокольчик), 6 плоскостей симметрии (безвременник). Цветки с радиальной симметрией называются актиноморфные, цветки с билатеральной симметрией - зигоморфные.

Билатера́льная симме́трия (двусторонняя симметрия) - симметрия зеркального отражения, при которой объект имеет одну плоскость симметрии, относительно которой две его половины зеркально симметричны. Если на плоскость симметрии опустить перпендикуляр из точки A и затем из точки О на плоскости симметрии продолжить его на длину AО, то он попадёт в точку A1, во всём подобную точке A. Ось симметрии у билатерально симметричных объектов отсутствует. У животных билатеральная симметрия проявляется в схожести или почти полной идентичности левой и правой половин тела. При этом всегда существуют случайные отклонения от симметрии (например, различия в папиллярных линиях, ветвлении сосудов и расположении родинок на правой и левой руках человека). Часто существуют небольшие, но закономерные различия во внешнем строении (например, более развитая мускулатура правой руки у праворуких людей) и более существенные различия между правой и левой половиной тела в расположении внутренних органов. Например, сердце у млекопитающих обычно размещено несимметрично, со смещением влево.

У животных появление билатеральной симметрии в эволюции связано с ползанием по субстрату (по дну водоема), в связи с чем появляются спинная и брюшная, а также правая и левая половины тела. В целом среди животных билатеральная симметрия более выражена у активно подвижных форм, чем у сидячих. Билатеральная симметрия свойственна всем достаточно высокоорганизованным животным, кроме иглокожих. В других царствах живых организмов билатеральная симметрия свойственна меньшему числу форм. Среди протистов она характерна для дипломонад (например, лямблий), некоторых форм трипаносом, бодонид, раковинок многих фораминифер. У растений билатеральную симметрию имеет обычно не весь организм, а его отдельные части - листья или цветки. Билатерально симметричные цветки ботаники называют зигоморфными.

17. Покрытосеменные (цветковые, пестичные) по времени появления на Земле являются самой молодой и в то же время наиболее высокоорганизованной группой растений. В процессе эволюции представители этого отдела появились позднее других, но они очень быстро заняли господствующее положение на земном шаре.

Наиболее характерной отличительной особенностью покрытосеменных является наличие у них своеобразного органа - цветка, который отсутствует у представителей других отделов растений. Поэтому покрытосеменные и называются чаще еще цветковыми растениями. Семяпочка у них скрытая, она развивается внутри пестика, в его завязи, поэтому покрытосеменные называются иначе пестичными. Пыльца у покрытосеменных улавливается не семяпочками, как у голосеменных, а особым образованием - рыльцем, которым заканчивается пестик.

После оплодотворения яйцеклетки из семяпочки образуется семя, а завязь разрастается в плод. Следовательно, семена у покрытосеменных развиваются в плодах, поэтому этот отдел растений и называется покрытосеменные.

Покрытосеменные (Angiospermae), или цветковые (Magnoliophyta) – отдел наиболее совершенных высших растений, имеющих цветок. Ранее включались в отдел семенных растений вместе с голосеменными. В отличие от последних семязачатки цветковых заключены в завязь, образованную сросшимися плодолистиками.

Цветок является генеративным органом покрытосеменных растений. Он состоит из цветоножки и цветоложа. На последнем располагаются околоцветник (простой или двойной), андроцей (совокупность тычинок) и гинецей (совокупность плодолистиков). Каждая тычинка состоит из тонкой тычиночной нити и расширенного пыльника, в котором созревают спермии. Плодолистик цветковых растений представлен пестиком, который состоит из массивной завязи и длинного столбика, вершинная расширенная часть которого называется рыльце.

Покрытосеменные имеют вегетативные органы, обеспечивающие механическую опору, транспорт, фотосинтез, газообмен, а также запасание питательных веществ, и генеративные органы, участвующие в половом размножении. Внутреннее строение тканей наиболее сложно из всех растений; ситовидные элементы флоэмы окружены клетками-спутницами; почти все представители покрытосеменных имеют сосуды ксилемы.

Содержащиеся внутри пыльцевых зёрен мужские гаметы попадают на рыльце и прорастают. Гаметофиты цветковых крайне упрощены и миниатюрны, что значительно сокращает длительность цикла размножения. Образуются они в результате минимального количества митозов (трёх у женского гаметофита и двух у мужского). Одна из особенностей полового размножения – двойное оплодотворение, когда один из спермиев сливается с яйцеклеткой, образуя зиготу, а второй – с полярными ядрами, образуя эндосперм, служащий запасом питательных веществ. Семена цветковых растений заключены в плод (отсюда их второе название – покрытосеменные).

18. ДНК Явление это было открыто в опытах с пневмококками, то есть с бактериями, вызывающими воспаление легких. Известны две формы пневмококков: А-форма с полисахаридной капсулой и Б-форма без капсулы. Оба эти признака наследственны.

Пневмококки А-формы при заражении ими мышей вызывают воспаление легких, от которого мыши погибают. Б-форма для них безвредна.

В 1928 году английский бактериолог Ф. Гриффитс заражал мышей смесью, состоящей из убитых нагреванием пневмококков А-формы и живых пневмококков Б-формы. Ученый предполагал, что мыши не заболеют. Но вопреки ожиданиям подопытные животные погибли. Ф. Гриффитсу удалось выделить из тканей погибших мышей пневмококки. Все они оказались капсулированными, то есть А-формы. Следовательно, убитая форма каким-то образом передавала свои свойства живым клеткам Б-формы. Но как? С помощью какого именно вещества: полисахарида, из которого состоит капсула, белка или ДНК?

От решения этого вопроса зависело многое, так как, установив вещество, передающее наследственный признак - образование капсулы, можно было получить нужный ответ. Однако сделать это не удавалось довольно долго. Лишь спустя 16 лет после опытов Ф. Гриффитса, в 1944 году, американский ученый А. Эвери с сотрудниками, поставив ряд четких экспериментов, сумел с полным обоснованием доказать, что полисахарид и белок не имеют никакого отношения к передаче наследственных свойств пневмококка А-формы.

В процессе этих экспериментов с помощью специального фермента растворили полисахаридную капсулу убитых пневмококков А-формы и проверили, продолжают ли остатки клетки формы А передавать наследственную информацию клеткам формы Б. Оказалось, что продолжают. Стало ясно, что полисахарид как источник генетической информации отпадает.

Таким образом, методом исключения было установлено, что наследственную информацию в клетке хранит и передает молекула ДНК. И действительно, когда разрушили ДНК, образование капсульных форм А из бескапсульных Б прекратилась.

Явление преобразования, то есть наследственного изменения свойств одной формы бактерий под воздействием веществ другой формы, было названо трансформацией. Вещество же, вызывающее трансформацию, получило название трансформирующего агента. Им, как было установлено, служит ДНК.

Каждый белок представлен одной или несколькими полипептидными цепями. Участок ДНК, несущий информацию об одной полипептидной цепи, называется геном. Каждая молекула ДНК содержит множество разных генов. Совокупность молекул ДНК клетки выполняет функцию носителя генетической информации. Благодаря уникальному свойству - способности к удвоению, которым не обладает ни одна другая из известных молекул, ДНК могут копироваться. При делении "копии" ДНК расходятся по двум дочерним клеткам, каждая из которых вследствие этого будет иметь ту же информацию, которая содержалась в материнской клетке. Так как гены - это участки молекул ДНК, то две клетки, образующиеся при делении, имеют одинаковые наборы генов. Каждая клетка многоклеточного организма при половом размножении возникает из одной оплодотворенной яйцеклетки в результате многократных делений. Значит, случайно возникшая ошибка в гене одной клетки будет воспроизведена в генах миллионов ее потомков. Вот почему все эритроциты больного серповидноклеточной анемией имеют одинаково испорченный гемоглобин. Ошибка произошла в гене, несущем информацию о бета-цепи белка. Копией гена является и-РНК. По ней, как по матрице, в каждом эритроците тысячи раз "печатается" неправильный белок. Дети получают испорченные гены от родителей через их половые клетки. Генетическая информация передается как от одной клетки в дочерние клетки, так и от родителей детям. Ген является единицей генетической, или наследственной, информации.

Индивидуальное развитие каждого организма представляет собой непрерывный процесс, который начинается с момента образования зиготы и продолжается до смерти организма.

Понятие онтогенеза

Онтогенез представляет собой цикл индивидуального развития каждого организма, в его основе лежит реализация наследственной информации на всех этапах существования. При этом немаловажное значение играет воздействие факторов внешней среды.

Онтогенез обусловлен продолжительным историческим развитием каждого конкретного вида. Биогенетический закон, который сформулировали ученые Мюллер и Геккель, отражает взаимосвязь индивидуального и исторического развития.

Стадии онтогенеза

Если рассматривать с точки зрения биологии, то самым значимым событием во всем индивидуальном развитии является способность к размножению. Именно это качество обеспечивает существование видов в природе.

Исходя из способности размножаться, весь онтогенез можно разделить на несколько периодов.

  1. Дорепродуктивный.
  2. Репродуктивный.
  3. Пострепродуктивный.

В течение первого периода происходит реализация наследственной информации, которая проявляется в структурных и функциональных преобразованиях организма. На этом этапе особь достаточно чувствительна ко всем воздействиям.

Репродуктивный период реализует самое важное предназначение каждого организма - продолжение рода.

Последний этап неизбежен в индивидуальном развитии каждой особи, он проявляется старением и угасанием всех функций. Заканчивается всегда смертью организма.

Дорепродуктивный период еще можно разделить на несколько стадий:

  • личиночный;
  • метаморфоз;
  • ювенильный.

Все периоды имеют свои особенности, которые проявляются в зависимости от принадлежности организма к определенному виду.

Стадии эмбрионального периода

Учитывая особенности развития и ответные реакции эмбриона на повреждающие факторы, все внутриутробное развитие можно разделить на следующие стадии:

Первая стадия начинается с момента оплодотворения яйцеклетки и заканчивается внедрением бластоцисты в оболочку матки. Это происходит примерно на 5-6 день после образования зиготы.

Период дробления

Сразу после слияния яйцеклетки со сперматозоидом начинается эмбриональный период онтогенеза. Образуется зигота, которая приступает к дроблению. При этом образуются бластомеры, чем больше по количеству их становится, тем меньше они по своим размерам.

Процесс дробления протекает не одинаково у представителей разных видов. Это зависит от количества питательных веществ и распределения их в цитоплазме клетки. Чем больше желтка, тем медленнее идет деление.

Дробление может быть равномерным и неравномерным, а также полным или неполным. Для человека и всех млекопитающих характерно полное неравномерное дробление.

В результате этого процесса образуется многоклеточный однослойный зародыш с небольшой полостью внутри, его называют бластулой.

Бластула

Этой стадией заканчивается первый период эмбрионального развития организма. В клетках бластулы можно уже наблюдать типичное для конкретного вида соотношение ядра и цитоплазмы.

С этого момента клетки зародыша уже имеют название эмбриональных. Эта стадия характерна абсолютно для всех организмов любого вида. У млекопитающих и человека дробление неравномерное из-за небольшого количества желтка.

В разных бластомерах деление идет с разными темпами, и можно наблюдать образование светлых клеток, они располагаются по периферии, и темных, которые выстраиваются в центре.

Из светлых клеток образуется трофобласт, его клетки способны:

  • растворять ткани, поэтому зародыш получает возможность внедриться в стенку матки;
  • отслаиваться от клеток зародыша и образовывать пузырек, заполненный жидкостью.

Сам зародыш располагается на внутренней стенке трофобласта.

Гаструляция

После бластулы у всех многоклеточных организмов начинается следующий эмбриональный период - это образование гаструлы. В процессе гаструляции различают два этапа:

  • образование двухслойного зародыша, состоящего из эктодермы и энтодермы;
  • появление трехслойного зародыша, образуется третий зародышевый листок - мезодерма.

Гаструляция происходит путем инвагинации, когда клетки бластулы с одного полюса начинают впячиваться внутрь. Внешний слой клеток носит название эктодермы, а внутренний - энтодермы. Появившаяся полость называется гастроцелью.

Третий зародышевый листок - мезодерма - образуется между эктодермой и энтодермой.

Образование тканей и органов

Образовавшиеся в конце стадии три зародышевых листка дадут начало всем органам и тканям будущего организма. Начинается следующий эмбриональный период развития.

Из эктодермы развиваются:

  • нервная система;
  • кожа;
  • ногти и волосы;
  • сальные и потовые железы;
  • органы чувств.

Энтодерма дает начало следующим системам:

  • пищеварительной;
  • дыхательной;
  • части мочевыделительной;
  • печени и поджелудочной железы.

Больше всего производных дает третий зародышевый листок - мезодерма, из нее образуется:

  • скелетная мускулатура;
  • половые железы и большая часть выделительной системы;
  • хрящевая ткань;
  • кровеносная система;
  • надпочечники и половые железы.

После образования тканей начинается следующий эмбриональный период онтогенеза - формирование органов.

Здесь можно выделить две фазы.

  1. Нейруляция . Образуется комплекс осевых органов, в который входят нервная трубка, хорда и кишечник.
  2. Построение остальных органов. Отдельные участки тела приобретают характерные для них формы и очертания.

Полностью органогенез заканчивается тогда, когда эмбриональный период подходит к своему завершению. Стоит отметить, что развитие и дифференцировка продолжаются и после рождения.

Контроль эмбрионального развития

Все этапы эмбрионального периода основаны на реализации наследственной информации, полученной от родителей. Успешность и качество реализации зависит от влияния внешних и внутренних факторов.

Схема онтогенетических процессов состоит из нескольких этапов.

  1. Гены получают всю информацию от соседних клеток, гормонов и других факторов для того, чтобы прийти в активное состояние.
  2. Информация от генов для осуществления синтеза белков на этапах транскрипции и трансляции.
  3. Информация от белковых молекул для стимулирования образования органов и тканей.

Сразу после слияния яйцеклетки со сперматозоидом начинается первый период эмбрионального развития организма - дробление, которое полностью регулируется той информацией, которая находится в яйце.

На стадии бластулы активация происходит генами сперматозоида, а гаструляция контролируется генетической информацией зародышевых клеток.

Формирование тканей и органов происходит за счет информации, содержащейся в клетках эмбриона. Начинается отделение стволовых клеток, которые и дают начало разным тканям и органам.

Формирование внешних признаков организма в эмбриональный период человека зависит не только от наследственной информации, но и от влияния внешних факторов.

Факторы, влияющие на эмбриональное развитие

Все воздействия, которые могут отрицательно сказаться на развитии ребенка, можно разделить на две группы:

  • факторы окружающей среды;
  • болезни и образ жизни мамы.

К первой группе факторов можно отнести следующие.

  1. Радиоактивное излучение. Если такое воздействие произошло на первой стадии эмбрионального периода, когда еще не произошла имплантация, то чаще всего происходит самопроизвольный выкидыш.
  2. Электромагнитное излучение. Возможно такое воздействие при нахождении вблизи работающих электроприборов.
  3. Воздействие химических веществ, сюда можно отнести бензол, удобрения, красители, химиотерапию.

Будущая мама также может стать причиной нарушения эмбрионального развития, можно назвать следующие опасные факторы:

  • хромосомные и генетические болезни;
  • употребление наркотических средств, спиртных напитков, уязвимыми считаются любые этапы эмбрионального периода;
  • инфекционные заболевания мамы во время беременности, например краснуха, сифилис, грипп, герпес;
  • сердечная недостаточность, бронхиальная астма, ожирение - при этих заболеваниях возможно нарушение поступления кислорода к тканям зародыша;
  • прием лекарственных средств; особенности эмбрионального периода таковы, что самыми опасными в этом отношении являются первые 12 недель развития;
  • чрезмерное увлечение синтетическими витаминными препаратами.

Если посмотреть на следующую таблицу, то можно убедиться, что не только недостаток витаминов вреден, но и их избыток.

Название витамина Опасная доза препарата Отклонения в развитии
A 1 млн. МЕ Нарушения в развитии головного мозга, гидроцефалия, выкидыш.
E 1 г Аномалии развития мозга, органов зрения, скелета.
D 50 000 МЕ Деформация черепа.
K 1,5 г Пониженная свертываемость крови.
C 3 г Выкидыш, мертворождение.
B2 1 г Сращение пальцев, укорочение конечностей.
PP 2,5 г Хромосомная мутация.
B5 50 г Нарушение в развитии нервной системы.
B6 10 г Мертворождение.

Болезни плода на последних этапах эмбрионального развития

На последних неделях развития происходит дозревание жизненно важных органов ребенка и подготовка к перенесению всевозможных нарушений, которые могут возникнуть в процессе родов.

Перед появлением на свет в организме плода создается высокий уровень пассивной иммунизации. На этом этапе также возможны различные болезни, которые может получить плод.


Таким образом, несмотря на практически сформированный организм ребенка, некоторые негативные факторы вполне способны вызвать серьезные нарушения и врожденные заболевания.

Опасные периоды эмбрионального развития

В течение всего эмбрионального развития можно выделить периоды, которые считаются наиболее опасными и уязвимыми, так как в это время происходит формирование жизненно важных органов.

  1. 2-11 неделя, так как происходит формирование головного мозга.
  2. 3-7 недели - идет закладка органов зрения и сердца.
  3. 3-8 неделя - происходит формирование конечностей.
  4. 9 неделя - закладывается живот.
  5. 4-12 недели - идет формирование половых органов.
  6. 10-12 неделя - закладка неба.

Рассмотренная характеристика эмбрионального периода еще раз подтверждает, что для развития плода самые опасные периоды считаются с 10 дня и до 12 недель. Именно в это время происходит формирование всех основных органов будущего организма.

Ведите здоровый образ жизни, постарайтесь оградить себя от вредного воздействия внешних факторов, избегайте общения с больными людьми, и тогда можно быть практически уверенным, что ваш малыш родится здоровым.

Эмбриогенез человека - это часть его индивидуального развития, онтогенеза. Он тесно связан с прогенезом (образованием половых клеток и ранним постэмбриональным развитием. Эмбриология человека изучает процесс развития человека, начиная с оплодотворения и до рождения. Эмбриогенез человека, продолжающийся в среднем 280 суток (10 лунных месяцев), подразделяется на три периода: начальный (первая неделя развития), зародышевый (вторая-восьмая недели), и плодный (с девятой недели до рождения ребенка). В курсе эмбриологии человека на кафедре гистологии более подробно изучаются ранние стадии развития.

В процессе эмбриогенеза можно выделить следующие основные стадии: эмбриогенез яйцеклетка оплодотворение дифференцировка

  • 1. Оплодотворение ~ слияние женской и мужской половых клеток. В результате образуется новый одноклеточный организм-зигота.
  • 2. Дробление. Серия быстро следующих друг за другом делений зиготы. Эта стадия заканчивается образованием многоклеточного зародыша, имеющего у человека форму пузырька-бластоцисты, соответствующей бластуле других позвоночных.
  • 3. Гаструляция. В результате деления, дифференцировки, взаимодействия и перемещения клеток зародыш становится многослойным. Появляются зародышевые листки эктодерма, энтодерма и мезодерма, несущие в себе накладки различных тканей и органов.
  • 4. Гистогенез, органогенез, системогенез. В ходе дифференцировки зародышевых листков образуются зачатки тканей, формирующие органы и системы организма человека.

Половые клетки. Зрелые половые клетки гаметы, в отличие от соматических содержат гаплоидный набор хромосом (23 хромосомы у человека). Мужские половые клетки называются сперматозоидами или спермиями, женские - яйцеклетками. Все хромосомы гамет называются аутосомами за исключением одной - половой. В женских половых клетках содержатся Х-хромосомы. Мужские половые клетки бывают двух типов - одни спермии содержат Х-хромосому, а другие У-хромосому, Мужские половые клетки человека имеют размеры 70 мкм. Развиваются и созревают они в яичках мужчины в больших количествах. В 3 мл эиякулята в среднем содержится 350 млн. спермиев. Мужские половые клетки очень подвижны, особенно с У-хромосомой. За 1,5-2 часа они могут достигать маточной трубы, где происходит созревание женской половой клетки и оплодотворение. Спермии сохраняют оплодотворяющую способность в половых путях женщины двое суток. Мужские половые клетки состоят из головки и хвостика, в котором различают связующую (или шейку), промежуточную (тело), главную и терминальные части. В головке расположено плотное ядро, окруженное небольшим ободком цитоплазмы. Спереди ядро покрыто плоским мешочком- "чехликом>>. в котором у переднего полюса

расположена акросома. Чехлик с хромосомой является производным комплекса Гольджи.В акросоме содержится набор ферментов, среди которых гиалуронидаза и протеазы, способные растворять оболочки яйцеклетки, В связующей части спермия в цитоплазме располагаются проксимальная центриоль и дистальная, от которой начинается осевая нить, аксонема. В промежуточном отделе (теле) осевая нить (2 центральных и 9 пар периферических трубочек) окружена расположенными по спирали митохондриями, обеспечивающими энергетику спермия. Главная часть хвостика по строению напоминает ресничку, окруженную тонкофибриллярным влагалищем. В терминальной части хвостика содержатся единичные сократительные фибриллы.

Женские половые клетки, яйцеклетки, классифицируются по количеству и расположению желтка, находящегося в их цитоплазме. Количество желтка зависит от условий и продолжительности развития эмбриона.



Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.