Принципы организации тканей общая гистология - введение, понятие ткани. Тема: эпителиальные ткани








Кожа – покрыта многослойным чешуйчатым (плоским) ороговевающим эпителием; Полость рта, глотки, пищевод, конечный отдел прямой кишки – покрыты многослойным неороговевающим эпителием; Слизистая оболочка мочевыводящих путей – покрыта переходным эпителием(мезотелия); Желудок, трахея, бронхи – однослойным столбчатым эпителием; Серозные оболочки (брюшина, плевра) - выстланы однослойным плоским эпителием. Сальные, потовые, слёзные, поджелудочная, щитовидная и т.д. - построены из железистого эпителия.


Соединительная ткань. Соединительная ткань, или ткани внутренней среды, представлена разнообразной по структуре и функциям группой тканей, которые располагаются внутри организма и не граничат ни с внешней средой, ни с полостями органов. Соединительная ткань защищает, изолирует и поддерживает части тела, а также выполняет транспортную функцию внутри организма (кровь). Например, ребра защищают органы грудной клетки, жир служит прекрасным изолятором, позвоночник поддерживает голову и туловище, кровь переносит питательные вещества, газы, гормоны и продукты обмена. Во всех случаях соединительная ткань характеризуется большим количеством межклеточного вещества. Выделяют следующие подтипы соединительной ткани: собственно соединительную (рыхлую, жировую, ретикулярную, плотную волокнистую), хрящевую, костную, а также кровь.



Собственно соединительная ткань. Собственно соединительная ткань представлена рыхлой и плотной волокнистой соединительной тканью. Соединительная ткань выполняет опорную, защитную (механическую) функции. Рыхлая соединительная ткань имеет сеть из эластичных и упругих (коллагеновых) волокон, расположенных в вязком межклеточном веществе. Эта ткань окружает все кровеносные сосуды и большинство органов, а также подстилает эпителий кожи.


Жировая. Рыхлая соединительная ткань, содержащая большое количество жировых клеток, называется жировой тканью; она служит местом запасания жира и источником образования воды. Некоторые части тела более, чем другие, способны накапливать жир, например под кожей или в сальнике. фиброзная ткань Рыхлая ткань содержит и другие клетки – макрофаги и фибробласты. Макрофаги фагоцитируют и переваривают микроорганизмы, разрушившиеся клетки тканей, чужеродные белки и старые клетки крови; их функцию можно назвать санитарной. Фибробласты ответственны главным образом за образование волокон в соединительной ткани.


Ретикулярная. Состоит из ретикулярных клеток и ретикулярных волокон. Образует остов кроветворных органов и органов иммунной системы (костный мозг, тимус, селезенка, лимфатические узлы, групповые и одиночные лимфоидные узелки). В петлях образованных ретикулярной тканью, располагаются кровеобразующие и иммунокомпетентные клетки.


Плотная волокнистая Неоформленная соединительная ткань. Состоит из множества соединительнотканных волокон густо переплетенных. Плотная оформленная соединительная ткань отличается упорядоченным расположением пучков волокон, определенным их направлением (связки, сухожилия).


Хрящевая. Соединительная ткань с плотным межклеточным веществом представлена либо хрящом, либо костью. Хрящ обеспечивает прочную, но гибкую основу органов. Наружное ухо, нос и носовая перегородка, гортань и трахея имеют хрящевой скелет. Основная функция этих хрящей состоит в поддержании формы различных структур. Хрящевые кольца трахеи препятствуют его спадению и обеспечивают продвижение воздуха в легкие. Хрящи между позвонками делают их подвижными относительно друг друга.


Костная. Кость представляет собой соединительную ткань, межклеточное вещество которой состоит из органического материала (оссеина) и неорганических солей, главным образом фосфатов кальция и магния. В ней всегда присутствуют специализированные костные клетки – остеоциты (видоизмененные фибробласты), рассеянные в межклеточном веществе. В отличие от хряща кость пронизана большим количеством кровеносных сосудов и некоторым числом нервов. С внешней стороны она покрыта надкостницей (периостом). Надкостница является источником клеток-предшественников остеоцитов, и восстановление целости кости – одна из ее основных функций.




– это соединительная ткань с жидким межклеточным веществом, плазмой, составляющей немногим более половины общего объема крови. Плазма содержит белок фибриноген, который при соприкосновении с воздухом или при повреждении кровеносного сосуда образует в присутствии кальция и факторов свертывания крови фибриновый сгусток, состоящий из нитей фибрина. Прозрачная желтоватая жидкость, остающаяся после образования сгустка, называется сывороткой. В плазме находятся различные белки (в т.ч. антитела), продукты метаболизма, питательные вещества (глюкоза, аминокислоты, жиры), газы (кислород, углекислый газ и азот), разнообразные соли и гормоны. В среднем у взрослого мужчины около 5 л крови.


Мышечная ткань. Мышцы обеспечивают передвижение организма в пространстве, его позу и сократительную активность внутренних органов. Способность к сокращению, в какой-то степени присущая всем клеткам, в мышечных клетках развита наиболее сильно. Выделяют три типа мышц: скелетные (поперечнополосатые, или произвольные), гладкие (висцеральные, или непроизвольные) и сердечную


Скелетные мышцы. Клетки скелетных мышц представляют собой длинные трубчатые структуры, число ядер в них может доходить до нескольких сотен. Их основными структурными и функциональными элементами являются мышечные волокна (миофибриллы), имеющие поперечную исчерченность. Скелетные мышцы стимулируются нервами (концевыми пластинками двигательных нервов); они реагируют быстро и контролируются в основном произвольно. Например, под произвольным контролем находятся мышцы конечностей, тогда как диафрагма зависит от него лишь опосредованно.


Гладкие мышцы состоят из веретенообразных одноядерных клеток с фибриллами, лишенными поперечных полос. Эти мышцы действуют медленно и сокращаются непроизвольно. Они выстилают стенки внутренних органов (кроме сердца). Благодаря их синхронному действию пища проталкивается через пищеварительную систему, моча выводится из организма, регулируются кровоток и кровяное давление, яйцеклетка и сперма продвигаются по соответствующим каналам.





Нервная ткань характеризуется максимальным развитием таких свойств, как раздражимость и проводимость. Раздражимость – способность реагировать на физические (тепло, холод, свет, звук, прикосновение) и химические (вкус, запах) стимулы (раздражители). Проводимость – способность передавать возникший в результате раздражения импульс (нервный импульс). Элементом, воспринимающим раздражение и проводящим нервный импульс, является нервная клетка (нейрон).


Нейрон состоит из тела клетки, содержащего ядро, и отростков – дендритов и аксона. Каждый нейрон может иметь много дендритов, но только один аксон, у которого бывает, однако, несколько ветвей. Дендриты, воспринимая стимул от разных участков мозга или с периферии, передают нервный импульс на тело нейрона.


От тела клетки нервный импульс проводится по одиночному отростку – аксону – к другим нейронам или эффекторным органам. Аксон одной клетки может контактировать либо с дендритами, либо с аксоном или телами других нейронов, либо с мышечными или железистыми клетками; эти специализированные контакты называются синапсами. Аксон, отходящий от тела клетки, покрыт оболочкой, которую образуют специализированные (шванновские) клетки; покрытый оболочкой аксон называют нервным волокном. Пучки нервных волокон составляют нервы. Они покрыты общей соединительнотканной оболочкой, в которую по всей длине вкраплены эластические и неэластические волокна и фибробласты (рыхлая соединительная ткань). В головном и спинном мозгу присутствует еще один тип специализированных клеток – клетки нейроглии. Это вспомогательные клетки, содержащиеся в мозгу в очень большом количестве. Их отростки оплетают нервные волокна и служат для них опорой, а также, по-видимому, и изоляторами. Кроме того, они имеют секреторную, трофическую и защитную функции. В отличие от нейронов клетки нейроглии способны к делению

В результате эволюционного развития у высших многоклеточных организмов возникли ткани.

Ткани - это исторически (филогенетически) сложившиеся системы клеток и неклеточных структур, обладающих общностью строения, в ряде случаев - общностью происхождения, и специализированные на выполнении определенных функций.

В любой системе все ее элементы упорядочены в пространстве и функционируют согласованно друг с другом; система в целом обладает при этом свойствами, не присущими ни одному из ее элементов, взятому в отдельности. Соответственно и в каждой ткани ее строение и функции несводимы к простой сумме свойств отдельных входящих в нее клеток.

Ведущими элементами тканевой системы являются клетки. Кроме клеток, различают клеточные производные и межклеточное вещество.

К производным клеток относят симпласты (например, мышечные волокна, наружная часть трофобласта), синцитий (развивающиеся мужские половые клетки, пульпа эмалевого органа), а также постклеточные структуры (эритроциты, тромбоциты, роговые чешуйки эпидермиса и т. д.).

Межклеточное вещество подразделяют на основное вещество и на волокна. Оно может быть представлено золем, гелем или быть минерализованным.

Среди волокон различают обычно три вида: коллагеновые, ретикулярные, эластические.

РАЗВИТИЕ ТКАНЕЙ

Свойства любой ткани несут на себе отпечаток всей предыдущей истории ее становления. Под развитием живой системы понимаются ее преобразования и в филогенезе, и в онтогенезе. Ткани как системы, состоящие из клеток и их производных, возникли исторически с появлением многоклеточных организмов.

Уже у низших представителей животного мира, таких как губки и кишечнополостные, клетки имеют различную функциональную специализацию и соответственно различное строение, так что могут быть объединены в различные ткани. Однако признаки этих тканей еще не стойки, возможности превращения клеток и соответственно одних тканей в иные достаточно широки. По мере исторического развития животного мира совершалось закрепление свойств отдельных тканей, а возможности их взаимных превращений ограничивались, количество же тканей одновременно постепенно увеличивалось в соответствии со все более возрастающей специализацией.

Онтогенез. Понятия детерминации и коммитирования.

Развитие организма начинается с одноклеточной стадии - зиготы. В ходе дробления возникают бластомеры, но совокупность бластомеров – это еще не ткань. Бластомеры на начальных этапах дробления еще не детерминированы (они тотипотентны). Если отделить их один от другого, - каждый может дать начало полноценному самостоятельному организму – механизм возникновения монозиготных близнецов. Постепенно на следующих стадиях происходит ограничение потенций. В основе его лежат процессы, связанные с блокированием отдельных компонентов генома клеток и детерминацией.

Детерминация – это процесс определения дальнейшего пути развития клеток на основе блокирования отдельных генов.

Понятие «коммитирование» тесно связано с клеточным делением (т.н. коммитирующий митоз).

Коммитирование – это ограничение возможных путей развития вследствие детерминации. Коммитирование совершается ступенчато. Сначала соответствующие преобразования генома касаются крупных его участков. Затем все более детализируются, поэтому вначале детерминируются наиболее общие свойства клеток, а затем и более частные.

Как известно, на этапе гаструляции возникают эмбриональные зачатки. Клетки, которые входят в их состав, еще не окончательно детерминированы, так что из одного зачатка возникают клеточные совокупности, обладающие разными свойствами. Следовательно, один эмбриональный зачаток может служить источником развития нескольких тканей.

ТЕОРИЯ ЭВОЛЮЦИИ ТКАНЕЙ

Последовательная ступенчатая детерминация и коммитирование потенций однородных клеточных группировок - дивергентный процесс. В общем виде эволюционная концепция дивергентного развития тканей в филогенезе и в онтогенезе была сформулирована Н.Г.Хлопиным. Современные генетические концепции подтверждают правоту его представлений. Именно Н.Г.Хлопин ввел понятие о генетических тканевых типах. Концепция Хлопина хорошо отвечает на вопрос, как и какими путями происходило развитие и становление тканей, но не останавливается на причинах, определяющих пути развития.

Причинные аспекты развития тканей раскрывает теория параллелизмов А.А.Заварзина. Он обратил внимание на сходство строения тканей, которые выполняют одинаковые функции у животных, принадлежащих даже к весьма удаленным друг от друга эволюционным группировкам. Вместе с тем известно, что, когда эволюционные ветви только расходились, у общих предков таких специализированных тканей еще не было. Следовательно, в ходе эволюции в разных ветвях филогенетического древа самостоятельно, как бы параллельно, возникали одинаково организованные ткани, выполняющие сходную функцию. Причиной этого является естественный отбор: если возникали какие-то организмы, у которых соответствие строения и функции клеток, тканей, органов нарушалось, они были и менее жизнеспособны. Теория Заварзина отвечает на вопрос, почему развитие тканей шло тем, а не иным путем, раскрывает казуальные аспекты эволюции тканей.

Концепции А.А.Заварзина и Н.Г.Хлопина, разработанные независимо одна от другой, дополняют друг друга и были объединены А.А.Брауном и В.П.Михайловым: сходные тканевые структуры возникали параллельное ходе дивергентного развития.

(См. Курс гистологии А.А.Заварзина и А.В.Румянцева, 1946г.)

Развитие тканей в эмбриогенезе происходит в результате дифференцировки клеток. Под дифференцировкой понимают изменения в структуре клеток в результате их функциональной специализации, обусловленные активностью их генетического аппарата. Различают четыре основных периода дифференцировки клеток зародыша - оотипическую, бластомерную, зачатковую и тканевую дифференцировку. Проходя через эти периоды клетки зародыша образуют ткани (гистогенез).
КЛАССИФИКАЦИЯ ТКАНЕЙ

Имеется несколько классификаций тканей. Наиболее распространенной является так называемая морфофункциональная классификация, по которой насчитывают четыре группы тканей:
эпителиальные ткани;
ткани внутренней среды;
мышечные ткани;
нервная ткань.

К тканям внутренней среды относятся соединительные ткани, кровь и лимфа.

Эпителиальные ткани характеризуются объединением клеток в пласты или тяжи. Через эти ткани совершается обмен веществ между организмом и внешней средой. Эпителиальные ткани выполняют функции защиты, всасывания и экскреции. Источниками формирования эпителиальных тканей являются все три зародышевых листка - эктодерма, мезодерма и энтодерма.

Ткани внутренней среды (соединительные ткани, включая скелетные, кровь и лимфа) развиваются из так называемой эмбриональной соединительной ткани - мезенхимы. Ткани внутренней среды характеризуются наличием большого количества межклеточного вещества и содержат различные клетки. Они специализируются на выполнении трофической, пластической, опорной и защитной функциях.

Мышечные ткани специализированны на выполнении функции движения. Они развивается в основном из мезодермы (поперечно исчерченная ткань) и мезенхимы (гладкая мышечная ткань).

Нервная ткань развивается из эктодермы и специализируется на выполнении регуляторной функции - восприятии, проведении и передачи информации.

ОСНОВЫ КИНЕТИКИ КЛЕТОЧНЫХ ПОПУЛЯЦИЙ

Каждая ткань имеет или имела в эмбриогенезе стволовые клетки - наименее дифференцированные и наименее коммитированные. Они образуют самоподдерживающуюся популяцию, их потомки способны дифференцироваться в нескольких направлениях под влиянием микроокружения (факторов дифференцировки), образуя клетки-предшественники и, далее, функционирующие дифференцированные клетки. Таким образом, стволовые клетки полипотентны. Они делятся редко, пополнение зрелых клеток ткани, если это необходимо, осуществляется в первую очередь за счет клеток следующих генераций (клеток-предшественников). По сравнению со всеми другими клетками данной ткани стволовые клетки наиболее устойчивы к повреждающим воздействиям.

Хотя в состав ткани входят не только клетки, именно клетки являются ведущими элементами системы, т. е. определяют ее основные свойства. Их разрушение приводит к деструкции системы и, как правило, их гибель делает ткань нежизнеспособной, особенно если были затронуты стволовые клетки.

Если одна из стволовых клеток вступает на путь дифференциации, то в результате последовательного ряда коммитирующих митозов возникают сначала полустволовые, а затем и дифференцированные клетки со специфической функцией. Выход стволовой клетки из популяции служит сигналом для деления другой стволовой клетки по типу некоммитирующего митоза. Общая численность стволовых клеток в итоге восстанавливается. В условиях нормальной жизнедеятельности она сохраняется приблизительно постоянной.

Совокупность клеток, развивающихся из одного вида стволовых клеток, составляет стволовой дифферон. Часто в образовании ткани участвуют различные диффероны. Так, в состав эпидермиса, кроме кератиноцитов, входят клетки, развивающиеся в нейральном гребне и имеющие другую детерминацию (меланоциты), а также клетки, развивающиеся путем дифференциации стволовой клетки крови, т. е. принадлежащие уже к третьему дифферону (внутриэпидерминальные макрофаги, или клетки Лангерганса).

Дифференцированные клетки наряду с выполнением своих специфических функций способны синтезировать особые вещества - кейлоны, тормозящие интенсивность размножения клеток-предшественников и стволовых клеток. Если в силу каких-либо причин количество дифференцированных функционирующих клеток уменьшается (например, после травмы), тормозящее действие кейлонов ослабевает и численность популяции восстанавливается. Кроме кейлонов (местных регуляторов), клеточное размножение контролируется гормонами; одновременно продукты жизнедеятельности клеток регулируют активность желёз внутренней секреции. Если какие-либо клетки под воздействием внешних повреждающих факторов претерпевают мутации, они элиминируются из тканевой системы вследствие иммунологических реакций.

Выбор пути дифференциации клеток определяется межклеточными взаимодействиями. Влияние микроокружения изменяет активность генома дифференцирующейся клетки, активируя одни и блокируя другие гены. У клеток, уже дифференцированных и утративших способность к дальнейшему размножению, строение и функция тоже могут изменяться (например, у гранулоцитов начиная со стадии метамиелоцита). Такой процесс не приводит к возникновению различий среди потомков клетки и для него больше подходит название «специализация».

РЕГЕНЕРАЦИЯ ТКАНЕЙ

Знание основ кинетики клеточных популяций необходимо для понимания теории регенерации, т.е. восстановления структуры биологического объекта после ее разрушения. Соответственно уровням организации живого различают клеточную (или внутриклеточную), тканевую, органную регенерацию. Предметом общей гистологии является регенерация на тканевом уровне.

Различают регенерацию физиологическую, которая совершается постоянно в здоровом организме, и репаративную - вследствие повреждения. У разных тканей возможности регенерации неодинаковы.

В ряде тканей гибель клеток генетически запрограммирована и совершается постоянно (в многослойном ороговевающем эпителии кожи, в однослойном каемчатом эпителии тонкой кишки, в крови). За счет непрерывного размножения, в первую очередь полустволовых клеток-предшественников, количество клеток в популяции пополняется и постоянно находится в состоянии равновесия. Наряду с запрограммированной физиологической гибелью клеток во всех тканях происходит и незапрограммированная - от случайных причин: травмирования, интоксикаций, воздействий радиационного фона. Хотя в ряде тканей запрограммированной гибели нет, но в течение всей жизни в них сохраняются стволовые и полу-стволовые клетки. В ответ на случайную гибель возникает их размножение и популяция восстанавливается.

У взрослого человека в тканях, где стволовых клеток не остается, регенерация на тканевом уровне невозможна, она происходит лишь на клеточном уровне.

Органы и системы организма являются многотканевыми образованиями, в которых различные ткани тесно взаимосвязаны и взаимообусловлены при выполнении ряда характерных функций. В процессе эволюции у высших животных и человека возникли интегрирующие и регулирующие системы организма - нервная и эндокринная. Все многотканевые компоненты органов и систем организма находятся под контролем этих регулирующих систем и, таким образом, осуществляется высокая интеграция организма как единого целого. В эволюционном развитии животного мира с усложнением организации возрастала интегрирующая и регулирующая роль нервной системы, в том числе и в нервной регуляции деятельности эндокринных желез.

Ткань – это возникшая в процессе эволюции система клеток и неклеточных структур, объединённых общностью строения и выполняемых функций (желательно определение знать наизусть и понимать значение: 1) ткань возникла в процессе эволюции, 2) это система клеток и неклеточных структур, 3) имеется общность строения, 4) система клеток и неклеточных структур, которые входят в состав данной ткани, имеют общие функции).

Структурно-функциональные элементы тканей подразделяются на: гистологические элементы клеточного (1) и неклеточного типа (2) . Структурно-функциональные элементы тканей человеческого организма можно сравнить с разными нитками, из которых состоят ткани текстильные.

Гистологический препарат «Гиалиновый хрящ»: 1 — клетки хондроциты, 2 — межклеточное вещество (гистологический элемент неклеточного типа)

1. Гистологические элементы клеточного типа обычно являются живыми структурами с собственным метаболизмом, ограниченные плазматической мембраной, и представляют собой клетки и их производные, возникшие в результате специализации. К ним относятся:

а) Клетки – главные элементы тканей, определяющие их основные свойства;

б) Постклеточные структуры , в которых утеряны важнейшие для клеток признаки (ядро, органоиды), например: эритроциты, роговые чешуйки эпидермиса, а также тромбоциты, которые являются частями клеток;

в) Симпласты – структуры, образованные в результате слияния отдельных клеток в единую цитоплазматическую массу с множеством ядер и общей плазмолеммой, например: волокно скелетной мышечной ткани, остеокласт;

г) Синцитии – структуры, состоящие из клеток, объединенных в единую сеть цитоплазматическими мостиками вследствие неполного разделения, например: сперматогенные клетки на стадиях размножения, роста и созревания.

2. Гистологические элементы неклеточного типа представлены веществами и структурами, которые вырабатываются клетками и выделяются за пределы плазмолеммы, объединенными под общим названием «межклеточное вещество» (тканевой матрикс). Межклеточное вещество обычно включает в себя следующие разновидности:

а) Аморфное (основное) вещество представлено бесструктурным скоплением органических (гликопротеины, гликозоаминогликаны, протеогликаны) и неорганических (соли) веществ, находящихся между клетками ткани в жидком, гелеобразном или твердом, иногда кристаллизованном состоянии (основное вещество костной ткани);

б) Волокна состоят из фибриллярных белков (эластин, различные виды коллагена), часто образующих в аморфном веществе пучки разной толщины. Среди них различают: 1) коллагеновые, 2) ретикулярные и 3) эластические волокна . Фибриллярные белки участвуют также в формировании капсул клеток (хрящи, кости) и базальных мембран (эпителии).

На фотографии — гистологический препарат «Рыхлая волокнистая соединительная ткань»: хорошо видны клетки, между которыми межклеточное вещество (волокна — полоски, аморфное вещество — светлые участки между клетками).

2. Классификация тканей . В соответствии с морфофункциональной классификацией тканей различают: 1) эпителиальные ткани, 2) ткани внутренней среды: соединительные и кроветворные, 3) мышечные и 4) нервную ткань.

3. Развитие тканей. Теория дивергентного развития тканей по Н.Г. Хлопину предполагает, что ткани возникли в результате дивергенции — расхождения признаков в связи с приспособлением структурных компонентов к новым условиям функционирования. Теория параллельных рядов по А.А. Заварзину описывает причины эволюции тканей, согласно которой ткани, выполняющие сходные функции, имеют сходное строение. В ходе филогенеза одинаковые ткани возникали параллельно в разных эволюционных ветвях животного мира, т.е. совершенно разные филогенетические типы первоначальных тканей, попадая в сходные условия существования внешней или внутренней среды, давали сходные морфофункциональные типы тканей. Эти типы возникают в филогенезе независимо друг от друга, т.е. параллельно, у абсолютно разных групп животных при стечении одинаковых обстоятельств эволюции. Эти две взаимодополняющие друг друга теории объединены в единую эволюционнную концепцию тканей (А.А. Браун и П.П. Михайлов), согласно которой сходные тканевые структуры в различных ветвях филогенетического древа возникали параллельно в ходе дивергентного развития.

Как из одной клетки — зиготы образуется такое разнообразие структур? За это отвечают такие процессы как ДЕТЕРМИНАЦИЯ, КОММИТИРОВАНИЕ, ДИФФЕРЕНЦИРОВКА. Попробуем разобраться с этими терминами.

Детерминация – это процесс, определяющий направление развития клеток, тканей из эмбриональных зачатков. В ходе детерминации клетки получают возможность развиваться в определённом направлении. Уже на ранних стадиях развития, когда происходит дробление, появляются два вида бластомеров: светлые и тёмные. Из светлых бластомеров не смогут впоследствии образоваться, например, кардиомиоциты, нейроны, поскольку они детерминированы и их направление развития — эпителий хориона. У этих клеток сильно ограничены возможности (потенции) развиваться.

Ступенчатое, согласованное с программой развития организма, ограничение возможных путей развития вследствие детерминации называется коммитированием . Например, если из клеток первичной эктодермы в двуслойном зародыше ещё могут развиться клетки почечной паренхимы, то при дальнейшем развитии и образовании трёхслойного зародыша (экто-, мезо- и энтодерма) из вторичной эктодермы — только нервная ткань, эпидермис кожи и некоторое другое.

Детерминация клеток и тканей в организме, как правило, необратима: клетки мезодермы, которые выселились из первичной полоски для образования почечной паренхимы обратно превратиться в клетки первичной эктодермы не смогут.

Дифференцировка направлена на создание в многоклеточном организме нескольких структурно-функциональных типов клеток. У человека таких типов клеток более 120. В ходе дифференцировки происходит постепенное формирование морфологических и функциональных признаков специализации клеток тканей (образование клеточных типов).

Дифферон – это гистогенетический ряд клеток одного типа, находящихся на разных этапах дифференцировки. Как люди в автобусе — дети, молодёжь, взрослые, пожилые. Если в автобусе будут перевозить кошку с котятами, то можно сказать, что в автобусе «два дифферона — людей и кошек».

В составе дифферона по степени дифференцировки различают следующие клеточные популяции: а) стволовые клетки - наименее дифференцированные клетки данной ткани, способные делиться и являющиеся источником развития других её клеток; б) полустволовые клетки - предшественники имеют ограничения в способности формировать различные типы клеток, вследствие коммитирования, но способны к активному размножению; в) клетки — бласты , вступившие в дифференцировку но сохраняющие способность к делению; г) созревающие клетки — заканчивающие дифференцировку; д) зрелые (дифференцированные) клетки, которые заканчивают гистогенетический ряд, способность к делению у них, как правило, исчезает, в ткани они активно функционируют; е) старые клетки — закончившие активное функционирование.

Уровень специализации клеток в популяциях дифферона возрастает от стволовых до зрелых клеток. При этом происходят изменения состава и активности ферментов, органоидов клеток. Для гистогенетических рядов дифферона характерен принцип необратимости дифференцировки , т.е. в нормальных условиях переход от более дифференцированного состояния к менее дифференцированному невозможен. Это свойство дифферона часто нарушается при патологических состояниях (злокачественные опухоли).

Пример дифференцировки структур с образованием мышечного волокна (последовательные стадии развития).

Зигота — бластоциста — внутренняя клеточная масса (эмбриобласт) — эпибласт — мезодерма — несегментированная мезодерма — сомит — клетки миотома сомита — миобласты митотические — миобласты постмитотические — мышечная трубочка — мышечное волокно.

В приведённой схеме от этапа к этапу ограничивается количество потенциальных направлений дифференцировки. Клетки несегментированной мезодермы имеют возможности (потенции) к дифференцировке в различных направлениях и образованию миогенного, хондрогенного, остеогенного и других направлений дифференцировки. Клетки миотома сомитов детерминированы к развитию только в одном направлении, а именно к образованию миогенного клеточного типа (поперечнополосатая мышца скелетного типа).

Клеточные популяции – это совокупность клеток организма или ткани, сходных между собой по какому-либо признаку. По способности к самообновлению путём деления клеток выделяют 4 категории клеточных популяций (по Леблону):

- Эмбриональная (быстро делящаяся клеточная популяция) – все клетки популяции активно делятся, специализированные элементы отсутствуют.

- Стабильная клеточная популяция – долгоживущие, активно функционирующие клетки, которые вследствие крайней специализации утратили способность к делению. Например, нейроны, кардиомиоциты.

- Растущая (лабильная) клеточная популяция – специализированные клетки которой способны делиться в определённых условиях. Например, эпителии почки, печени.

- Обновляющаяся популяция состоит из клеток, постоянно и быстро делящихся, а также специализированных функционирующих потомков этих клеток, продолжительность жизни которых ограничена. Например, эпителии кишечника, кроветворные клетки.

К особому типу клеточных популяций относят клон – группа идентичных клеток, происходящих от одной родоначальной клетки-предшественницы. Понятие клон как клеточной популяции часто используется в иммунологии, например, клон Т-лимфоцитов.

4. Регенерация тканей – процесс, обеспечивающий её обновление в ходе нормальной жизнедеятельности (физиологическая регенерация) или восстановление после повреждения (репаративная регенерация).

Камбиальные элементы – это популяции стволовых, полустволовых клеток-предшественников, а также бластных клеток данной ткани, деление которых поддерживает необходимое число ее клеток и восполняет убыль популяции зрелых элементов. В тех тканях, в которых не происходит обновления клеток путем их деления, камбий отсутствует. По распределению камбиальных элементов ткани различают несколько разновидностей камбия:

- Локализованный камбий – его элементы сосредоточены в конкретных участках ткани, например, в многослойном эпителии камбий локализован в базальном слое;

- Диффузный камбий – его элементы рассеяны в ткани, например, в гладкой мышечной ткани камбиальные элементы рассредоточены среди дифференцированных миоцитов;

- Вынесенный камбий – его элементы лежат за пределами ткани и по мере дифференцировки включаются в состав ткани, например, кровь содержит только дифференцированные элементы, элементы камбия находятся в органах кроветворения.

Возможность регенерации ткани определяется способностью ее клеток к делению и дифференцировке или уровнем внутриклеточной регенерации. Хорошо регенерируют ткани, которые имеют камбиальные элементы или представляют собой обновляющиеся или растущие клеточные популяции. Активность деления (пролиферации) клеток каждой ткани при регенерации контролируется факторами роста, гормонами, цитокинами, кейлонами, а также характером функциональных нагрузок.

Помимо тканевой и клеточной регенерации путем деления клеток существует внутриклеточная регенерация — процесс непрерывного обновления или восстановления структурных компонентов клетки после их повреждения. В тех тканях, которые являются стабильными клеточными популяциями и в которых отсутствуют камбиальные элементы (нервная ткань, сердечная мышечная ткань), данный тип регенерации является единственно возможным способом обновления и восстановления их структуры и функции.

Гипертрофия ткани – увеличение ее объема, массы и функциональной активности, — обычно является следствием а) гипертрофии клеток (при неизменном их числе) вследствие усиленной внутриклеточной регенерации; б) гиперплазии – увеличении числа ее клеток путем активации клеточного деления (пролиферации ) и (или) в результате ускорения дифференцировки новообразующихся клеток; в) сочетания обоих процессов. Атрофия ткани – снижение ее объема, массы и функциональной активности вследствие а) атрофии ее отдельных клеток вследствие преобладания процессов катаболизма, б) гибели части ее клеток, в) резкого уменьшения скорости деления и дифференцировки клеток.

5. Межтканевые и межклеточные отношения. Ткань поддерживает постоянство своей структурно-функциональной организации (гомеостаз) как единого целого только при условии постоянного влияния гистологических элементов друг на друга (внутритканевые взаимодействия), а также одних тканей на другие (межтканевые взаимодействия). Эти влияния можно рассматривать как процессы взаимного узнавания элементов, образования контактов и обмена информацией между ними. При этом формируются самые различные структурно-пространственные объединения. Клетки в ткани могут находиться на расстоянии и взаимодействовать друг с другом через межклеточное вещество (соединительные ткани), соприкасаться отростками, иногда достигающими значительной длины (нервная ткань), или образовывать плотно контактирующие клеточные пласты (эпителий). Совокупность тканей, объединенных в единое структурное целое соединительной тканью, координированное функционирование которого обеспечивается нервными и гуморальными факторами, образует органы и системы органов целого организма.

Для образования ткани необходимо, чтобы клетки объединились и были связаны между собой в клеточные ансамбли. Способность клеток избирательно прикрепляться друг к другу или к компонентам межклеточного вещества осуществляется с помощью процессов узнавания и адгезии, которые являются необходимым условием поддержания тканевой структуры. Реакции узнавания и адгезии происходят вследствие взаимодействия макромолекул специфических мембранных гликопротеидов, получивших название молекул адгезии . Прикрепление происходит с помощью особых субклеточных структур: а) точечных адгезионных контактов (прикрепление клеток к межклеточному веществу), б) межклеточных соединений (прикрепление клеток друг к другу).

Межклеточные соединения — специализированные структуры клеток, с помощью которых они механически скрепляются между собой, а также создают барьеры и каналы проницаемости для межклеточной коммуникации. Различают: 1) адгезионные клеточные соединения , выполняющие функцию межклеточного сцепления (промежуточный контакт, десмосома, полудесмасома), 2) замыкающие контакты , функция которых — образование барьера, задерживающего даже малые молекулы (плотный контакт), 3) проводящие (коммуникационные) контакты , функция которых состоит в передаче сигналов от клетки к клетке (щелевой контакт, синапс).

6. Регуляция жизнедеятельности тканей. В основе регуляции тканей – три системы: нервная, эндокринная и иммунная. Гуморальные факторы, обеспечивающие межклеточное взаимодействие в тканях и их метаболизм, включают в себя разнообразные клеточные метаболиты, гормоны, медиаторы, а также цитокины и кейлоны.

Цитокины являются наиболее универсальным классом внутри- и межтканевых регуляторных веществ. Они представляют собой гликопротеиды, которые в очень низких концентрациях оказывают влияние на реакции клеточного роста, пролиферации и дифференцировки. Действие цитокинов обусловлено наличием рецепторов к ним на плазмолемме клеток-мишеней. Эти вещества переносятся кровью и обладают дистантным (эндокринным) действием, а также распространяются по межклеточному веществу и действуют локально (ауто- или паракринно). Важнейшими цитокинами являются интерлейкины (ИЛ), факторы роста , колониестимулирующие факторы (КСФ), фактор некроза опухоли (ФНО), интерферон . Клетки различных тканей обладают большим количеством рецепторов к разнообразным цитокинам (от 10 до 10000 на клетку), эффекты которых нередко взаимно перекрываются, что обеспечивает высокую надёжность функционирования этой системы внутриклеточной регуляции.

Кейлоны – гормоноподобные регуляторы пролиферации клеток: тормозят митозы и стимулируют дифференцировку клеток. Кейлоны действуют по принципу обратной связи: при уменьшении количества зрелых клеток (например, потеря эпидермиса при травме) количество кейлонов уменьшается, а деление малодифференцированных камбиальных клеток усиливается, что проводит к регенерации ткани.

Ткань – это филогенетически сложившаяся система клеток и неклеточных структур, имеющих общность строения, нередко происхождения и специализированная на выполнении конкретных определённых функций.

Ткань закладывается в эмбриогенезе из зародышевых листков.

Из эктодермы образуется эпителий кожи (эпидермис), эпителий переднего и заднего отдела пищеварительного канала (в том числе эпителий дыхательных путей), эпителий влагалища и мочевыводящих путей, паренхима больших слюнных желёз, наружный эпителий роговицы и нервная ткань.

Из мезодермы образуется мезенхима и её производные. Это все разновидности соединительной ткани, в том числе кровь, лимфа, гладкая мышечная ткань, а также скелетная и сердечная мышечная ткань, нефрогенная ткань и мезотелий (серозные оболочки).

Из энтодермы – эпителий среднего отдела пищеварительного канала и паренхима пищеварительных желёз (печени и поджелудочной железы).

Направленность развития (дифференцировки клеток) обусловлена генетически – детерминация. Обеспечивает эту направленность микроокружение , функцию которого выполняет строма органов. Совокупность клеток, которые образуются из одного вида стволовых клеток – дифферон.

Ткани образуют органы. В органах выделяют строму, образованную соединительными тканями, и паренхиму. Все ткани регенерируют.

Различают физиологическую регенерацию , постоянно протекающую в обычных условиях, и репаративную регенерацию , которая возникает в ответ на раздражение клеток ткани. Механизмы регенерации одинаковые, только репаративная регенерация идёт в несколько раз быстрее. Регенерация лежит в основе выздоровления.



Механизмы регенерации :

Путём деления клеток . Он особенно развит в наиболее ранних тканях: эпителиальной и соединительной, они содержат много стволовых клеток, пролиферация которых обеспечивает регенерацию.

- внутриклеточная регенерация – она присуща всем клеткам, но является ведущим механизмом регенерации у высокоспециализированных клеток. В основе этого механизма лежит усиление внутриклеточных обменных процессов, которые приводят к восстановлению структуры клетки, а при дальнейшем усилении отдельных процессов происходит гипертрофия и гиперплазия внутриклеточных органелл, которая приводит к компенсаторной гипертрофии клеток, способных выполнять большую функцию.

Ткани развивались в эволюции. Выделяют 4 группы тканей. В основу классификации заложены два принципа: гистогенетические, в основу которых заложено происхождение (Ник.Григ. Хлопин), и морфофункциональные (Ал.Ал. Заварзин). Согласно этой классификации структура определяется функцией ткани.

Первыми возникли эпителиальные или покровные ткани, важнейшие функции – защитная и трофическая. Они отличаются высоким содержанием стволовых клеток и регенерируют за счёт пролиферации и дифференцировки.

Затем появились соединительные ткани или опорно-трофические, ткани внутренней среды. Ведущие функции: трофическая, опорная, защитная и гомеостатическая – поддержание постоянства внутренней среды. Они характеризуются высоким содержанием стволовых клеток и регенерируют за счёт пролиферации и дифференцировки. В этой ткани выделяют самостоятельную подгруппу – кровь и лимфу – жидкие ткани.

Следующие – мышечные (сократительные) ткани. Основное свойство – сократительное – определяет двигательную активность органов и организма. Выделяют гладкую мышечную ткань – умеренная способность к регенерации путём пролиферации и дифференцировки стволовых клеток, и исчерченные (поперечно-полосатые) мышечные ткани. К ним относят сердечную ткань – внутриклеточная регенерация, и скелетную ткань – регенерирует за счёт пролиферации и дифференцировки стволовых клеток. Основным механизмом восстановления является внутриклеточная регенерация.

Затем возникла нервная ткань. Содержит глиальные клетки, они способны пролиферировать, но сами нервные клетки (нейроны) – высоко дифференцированные клетки. Они реагируют на раздражители, образуют нервный импульс и передают этот импульс по отросткам. Нервные клетки обладают внутриклеточной регенерацией. По мере дифференцировки ткани происходит смена ведущего способа регенерации – от клеточного до внутриклеточного.

ЭПИТЕЛИАЛЬНЫЕ ТКАНИ

Это наиболее древние и наиболее распространённые в организме. Развиваются из всех трёх зародышевых листков. Выполняют защитную и барьерную функцию, обменную, трофическую, секреторную и выделительную.

Они подразделяются на покровные , которые выстилают тело и все полости, имеющиеся в организме, и железистые , которые вырабатывают и выделяют секрет.

Все эпителиальные ткани являются пластом эпителиальных клеток. В них крайне мало межклеточного вещества . Эпителиальные клетки плотно прилегают друг к другу и прочно соединены клеточными контактами.

Для эпителиальных клеток характерна полярность – в базальной части почти всегда находятся ядро и органеллы. Здесь идёт синтез секретов, в верхушечной части накапливаются гранулы секрета и там располагаются микроворсинки и реснички. Полярность характерна для эпителиального пласта в целом. Внутри клетки содержат тонофибриллы, они выполняют функцию каркаса. Эпителиальный пласт всегда лежит на базальной мембране , содержит фибриллы и аморфное вещество и регулирует проницаемость. Под базальной мембраной находится рыхлая соединительная ткань, которая содержит кровеносные сосуды. Из них питательные вещества через базальную мембрану поступают в эпителий, а продукты обмена в обратном направлении. В самом эпителиальном пласте сосудов нет . Все эпителиальные ткани отличаются высокой способностью к регенерации за счёт деления и дифференцировки стволовых клеток. Регенерация усиливается при снижении концентрации в эпителиальной ткани кибионов.

Эпителий содержит большое число рецепторов. В эпителиях находятся иммуннокомпетентные клетки. Это лимфоциты памяти и макрофаги, которые обеспечивают местный иммунитет.

Покровный эпителий. Для него существует гистогенетическая классификация Ал.Ал. Хлопина . На первое место он поставил происхождение эпителия, поэтому его классификация имеет большое значение в онкологии в связи с метастазами опухолей. По филогенетической классификации эпителии делят на 5 типов:

Эпидермальные эпителии эктодермального происхождения (кожные),

Энтеродермальные эпителии кишечного типа,

Целонефродермальные эпителии (почечного типа и целомический эпителий полостей – мезотелий),

Ангиодермальный эпителий (эндотелий лимфатических и кровеносных сосудов и выстилка полостей сердца),

Эпендимоглиальные эпителии (выстилка желудочков мозга и центрального канала спинного мозга).

Более распространена морфофункциональная классификация Заварзина . По ней все покровные ткани делятся на однослойные и многослойные. Ведущей функцией однослойных эпителиев является обменная. Однослойные делятся на: однорядные, которые в зависимости от формы клеток подразделяются на плоский эпителий, кубический эпителий, цилиндрический или призматический эпителий, и многорядный – эпителий, в котором все клетки лежат на базальной мембране, но имеют разную высоту, поэтомуих ядра располагаются на разных уровнях, что при световой микроскопии создает впечатление многослойности (многорядности).

Выделяют многослойный эпителий, содержащий несколько слоёв, этот эпителий плоский. Ведущая функция – защитная. Он подразделяется на плоский неороговевающий, плоский ороговевающий и многослойный переходный эпителий.

Однослойный плоский эпителий (эндотелий и мезотелий). Эндотелий выстилает изнутри кровеносные, лимфатические сосуды, полости сердца. Эндотелиальные клетки плоские, бедны органеллами и образуют эндотелиальный пласт. Хорошо развита обменная функция. Они создают условия для кровотока. При нарушении эпителия образуются тромбы. Эндотелий развивается из мезенхимы. Вторая разновидность – мезотелий – развивается из мезодермы. Выстилает все серозные оболочки. Состоит из плоских полигональной формы клеток, связанных между собой неровными краями. Клетки имеют одно, реже два уплощенных ядра. На апикальной поверхности имеются короткие микроворсинки. Они обладают всасывательной, выделительной и разграничительной функциями. Мезотелий обеспечивает свободное скольжение внутренних органов относительно друг друга. Мезотелий выделяет на свою поверхность слизистый секрет. Мезотелий предотвращает образование соединительнотканных спаек. Достаточно хорошо регенерируют за счет митоза.

Однослойный кубический эпителий развивается из энтодермы и мезодермы. На апекальной поверхности имеются микроворсинки, увеличивающие рабочую поверхность, а в базальной части цитолемма образует глубокие складки, между которыми в цитоплазме располагаются митохондрии, поэтому базальная часть клеток выглядит исчерченной. Выстилает мелкие выводные протоки поджелудочной железы, желчные протоки и почечные канальцы.

Однослойный цилиндрический эпителий встречается в органах среднего отдела пищеварительного канала, пищеварительных железах, почках, половых железах и половых путях. При этом строение и функция определяется его локализацией. Развивается из энтодермы и мезодермы. Слизистую желудка выстилает однослойный железистый эпителий. Он вырабатывает и выделяет слизистый секрет, который распространяется по поверхности эпителия и защищает слизистую оболочку от повреждения. Цитолемма базальной части также имеет небольшие складки. Эпителий обладает высокой регенерацией, которая зависит от среды, с которой контактирует эпителий (в желудке 1,5 суток, в кишечнике 2-2,5 суток), у детей регенерация идет быстрее.

Почечные канальцы и слизистая оболочка кишечника выстлана каёмчатым эпителием. В каёмчатом эпителии кишечника преобладают каёмчатые клетки – энтероциты. На их верхушке располагаются многочисленные микроворсинки. В этой зоне происходит пристеночное пищеварение и интенсивное всасывание продуктов питания. Слизистые бокаловидные клетки вырабатывают на поверхность эпителия слизь, а между клетками располагаются мелкие эндокринные клетки. Они выделяют гормоны, которые обеспечивают местную регуляцию.

Однослойный многорядный реснитчатый эпителий. Он выстилает воздухоносные пути и имеет эктодермальное происхождение. В нём клетки разной высоты, и ядра располагаются на разных уровнях. Клетки располагаются пластом. Под базальной мембраной лежит рыхлая соединительная ткань с кровеносными сосудами, а в эпителиальном пласте преобладают высокодифференцированные реснитчатые клетки. У них узкое основание, широкая верхушка. На верхушке располагаются мерцательные реснички. Они полностью погружены в слизь. Между реснитчатыми клетками находятся бокаловидные – это одноклеточные слизистые железы. Они вырабатывают слизистый секрет на поверхность эпителия.

Имеются эндокринные клетки. Между ними располагаются короткие и длинные вставочные клетки, это стволовые клетки, малодифференцированные, за счёт них идёт пролиферация клеток.

Мерцательные реснички совершают колебательные движения и перемещают слизистую плёнку по воздухоносным путям к внешней среде.

Многослойный плоский неороговевающий эпителий. Он развивается из эктодермы, выстилает роговицу, передний отдел пищеварительного канала и участок анального отдела пищеварительного канала, влагалище. Клетки располагаются в несколько слоёв. На базальной мембране лежит слой базальных или цилиндрических клеток. Часть из них – стволовые клетки. Они пролиферируют, отделяются от базальной мембраны, превращаются в клетки полигональной формы с выростами, шипами и совокупность этих клеток формирует слой шиповатых клеток, располагающихся в несколько этажей. Они постепенно уплощаются и образуют поверхностный слой плоских, которые с поверхности отторгаются во внешнюю среду.

Многослойный плоский ороговевающий эпителий – эпидермис, он выстилает кожные покровы. В толстой коже (ладонные поверхности), которая постоянно испытывает нагрузку, эпидермис содержит 5 слоёв:

1 – базальный слой – содержит стволовые клетки, дифференцированные цилиндрические и пигментные клетки (пигментоциты).

2 – шиповатый слой – клетки полигональной формы, в них содержатся тонофибриллы.

3 – зернистый слой – клетки приобретают ромбовидную форму, тонофибриллы распадаются и внутри этих клеток в виде зёрен образуются белок кератогиалин, с этого начинается процесс ороговения.

4 – блестящий слой – узкий слой, в нём клетки становятся плоскими, они постепенно утрачивают внутриклеточную структуру, и кератогиалин превращается в элеидин.

5 – роговой слой – содержит роговые чешуйки, которые полностью утратили строение клеток, содержат белок кератин. При механической нагрузке и при ухудшении кровоснабжения процесс ороговения усиливается.

В тонкой коже, которая не испытывает нагрузки, отсутствует зернистый и блестящий слой.

Многослойный кубический и цилиндрический эпителии встречаются крайне редко – в области коньюнктивы глаза и области стыка прямой кишки между однослойным и многослойным эпителиями.

Переходный эпителий (уроэпителий) выстилает мочевыводящие пути и аллантоис. Содержит базальный слой клеток, часть клеток постепенно отделяется от базальной мембраны и образует промежуточный слой грушевидных клеток. На поверхности располагается слой покровных клеток – крупные клетки, иногда двухрядные, покрыты слизью. Толщина этого эпителия меняется в зависимости от степени растяжения стенки мочевыводящих органов. Эпителий способен выделять секрет, защищающий его клетки от воздействия мочи.

Железистый эпителий – разновидность эпителиальной ткани, которая состоит из эпителиальных железистых клеток, которые в процессе эволюции приобрели ведущее свойство вырабатывать и выделять секреты. Такие клетки называются секреторными (железистыми) – гландулоцитами. Они имеют точно такую же общую характеристику как покровный эпителий.

Секреторный цикл железистых клеток содержит несколько фаз.

1 - поступление в клетку исходных веществ из кровеносных капилляров.

2 - синтез и накопление секрета.

3 - выделение секрета.

Механизм выделения секрета определяется его плотностью, вязкостью. По характеру вырабатываемого секрета железистые клетки подразделяются на белковые, слизистые и сальные.

Очень жидкие секреты, как правило, белковые (напр.: слюнной секрет) выделяется по мерокриновому типу, клетка не разрушается.

Более вязкий секрет (напр., потовый секрет, молочный секрет) выделяется по апокриновому типу. При этом от верхушки отделяется часть клетки в виде капель, которые содержат секрет. Верхушка клетки разрушается.

Очень вязкий секрет (сальный секрет) выделяется при полном разрушении клетки – голокриновый тип секреции.

4- восстановление (регенерация) клетки, который идёт за счёт внутриклеточной регенерации для клеток, функционирующих по меро- и апокриновому типу; при голокриновом типе секреции за счёт пролиферации стволовых клеток. Процесс регенерации идёт интенсивно.

Железистый эпителий входит в состав желёз, образует железы, а железы – это органы. Они также возникают в процессе эволюции (филогенеза). В эмбриогенезе часть эпителиального пласта погружается в подлежащую соединительную ткань и превращается в железистый эпителий, который участвует в формировании желёз.

Если связь с покровным эпителием утрачивается, то такие железы становятся эндокринными и свой секрет – гормон – они диффузно выделяют в кровь. Если связь желёз сохраняется с покровным эпителием с помощью выводного протока, то такие железы называются экзокринными.

В экзокринных железах выделяют секреторный отдел, в которых вырабатывается секрет, и выводной проток. Через него секрет выводится (попадает) на поверхность покровного эпителия или в полость органов.

Основная масса желёз – многоклеточные и лишь одна железа одноклеточная – бокаловидная слизистая клетка. Эта клетка располагается эндоэпителиально, а все другие железы – экзоэпителиальные и располагаются либо в стенке органов, либо образуют крупные самостоятельные органы. По строению железы подразделяются на простые (они имеют один выводной проток) и сложные (у них несколько выводных протоков, они ветвятся).

Различают неразветвлённые железы, когда в один выводной проток открывается один секреторный отдел, и разветвлённые, когда в один выводной проток открывается несколько выводных протоков.

По форме секреторного отдела различают альвеолярные железы, трубчатые железы и альвеолярно-трубчатые. По характеру вырабатываемого и выделяемого секрета железы делятся на белковые, слизистые, белково-слизистые и сальные железы.

Железы эктодермального происхождения являются многослойными и в секреторных отделах, и в мелких выводных протоках. Они содержат миоэпителиальные клетки, у которых маленькое тело и тонкие длинные отростки, которыми они охватывают снаружи секреторные клетки и эпителии выводных протоков. Сокращаясь, они способствуют выведению по протокам.

Железы энтодермального происхождения однослойные.

Все железы помимо железистого эпителия содержат соединительную ткань и большое количество кровеносных капилляров.

Железы характеризуются высокой способностью к регенерации. Все крупные железы являются сложными и разветвлёнными.

ОПОРНО-ТРОФИЧЕСКИЕ ТКАНИ

Они содержат клетки, межклеточное вещество у них хорошо выражено и занимает большой объём. В нём выделяют основное вещество и волокнистые структуры. Соединительные ткани выполняют опорную, формообразующую, стромальную функции, также трофическую функцию. За счёт этого поддерживается гомеостаз – постоянство внутренней среды; выполняют как специфическую, так и неспецифическую защитные функции, пластическую функцию. Она отличается высокой способностью к регенерации.

Все разновидности соединительной ткани отличаются количеством и разнообразием клеточного состава, объёмом межклеточного вещества, количеством и степенью упорядоченности расположения волокон в межклеточном веществе.

В группе опорно-трофических тканей особое место занимают жидкие ткани – кровь и лимфа; все остальные объединены под названием соединительных тканей.

Все соединительные ткани подразделяются на:

- собственно соединительные ткани (волокнистые). Здесь выделяют рыхлую неоформленную соединительную ткань, плотные ткани, которые делят на плотную неоформленную соединительную ткань и плотную оформленную соединительную ткань.

- соединительные ткани со специальными свойствами . Сюда входит ретикулярная ткань, жировая, слизистая и пигментная ткани.

- скелетные соединительные ткани . К ним относятся хрящевые и костные ткани.

Ткань - это филогенетически сложившаяся система клеток и неклеточных структур, имеющих общность строения, нередко происхождения и специализированная на выполнении конкретных определённых функций.

Ткань закладывается в эмбриогенезе из зародышевых листков.

Из эктодермы образуется эпителий кожи (эпидермис), эпителий переднего и заднего отдела пищеварительного канала (в том числе эпителий дыхательных путей), эпителий влагалища и мочевыводящих путей паренхима больших слюнных желез, наружный эпителий роговицы и нервная ткань.

Из мезодермы образуется мезенхима и её производные. Это все разновидности соединительной ткани, в том числе кровь, лимфа, гладкая мышечная ткань, а также скелетная и сердечная мышечная ткань, неврогенная ткань и мезотелий (серозные оболочки).

Из энтодермы - эпителий среднего отдела пищеварительного канала и паренхима пищеварительных желез (печени и поджелудочной железы).

Направленность развития (дифференцировки клеток) обусловлена генетически - детерминация.

Обеспечивает эту направленность микроокружение, функцию которого выполняет строма органов. Совокупность клеток, которые образуются из одного вида стволовых клеток - дифферон.

Ткани образуют органы. В органах выделяют строму образованную соединительными тканями, и паренхиму. Все ткани регенерируют.

Различают физиологическую регенерацию, постоянно протекающую в обычных условиях, и репаративную регенерацию, которая возникает в ответ на раздражение клеток ткани. Механизмы регенерации одинаковые, только репаративная регенерация идёт в несколько раз быстрее. Регенерация лежит в основе выздоровления.

Механизмы регенерации:

а) путём деления клеток. Он особенно развит в наиболее ранних тканях: эпителиальной и соединительной, они содержат много стволовых клеток, пролиферация которых обеспечивает регенерацию.

б) внутриклеточная регенерация - она присуща всем клеткам, но является ведущим механизмом регенерации у высокоспециализированных клеток. В основе этого механизма лежит усиление внутриклеточных обменных процессов, которые приводят к восстановлению структуры клетки, а при дальнейшем усилении отдельных процессов

происходит гипертрофия и гиперплазия внутриклеточных органелл, которая приводит к компенсаторной гипертрофии клеток, способных выполнять большую функцию.

Ткани развивались в эволюции. Выделяют 4 группы тканей. В основу классификации заложены два принципа: гистогенетические, в основу которых заложено происхождение (Ник. Григ. Хлопин Х И морфофункциональные Ал. Ал. Заварзин). Согласно этой классификации структура определяется функцией ткани.

Первыми возникли эпителиальные или покровные ткани, важнейшие функции - защитная и трофическая. Они отличаются высоким содержанием стволовых клеток и регенерируют за счёт пролиферации и дифференцировки.

Затем появились соединительные ткани или опорно-трофические, ткани внутренней среды. Ведущие функции: трофическая, опорная, защитная и гомеостатическая - поддержание постоянства внутренней среды. Они характеризуются высоким содержанием стволовых клеток и регенерируют за счёт пролиферации и дифференцировки. В этой ткани выделяют самостоятельную подгруппу - кровь и лимфу - жидкие ткани.

Следующие - мышечные (сократительные) ткани. Основное свойство - сократительное - определяет двигательную активность органов и организма. Выделяют гладкую мышечную ткань - умеренная способность к регенерации путём пролиферации и дифференцировки стволовых клеток, и исчерченные (поперечно-полосатые) мышечные ткани. К ним относят сердечную ткань - внутриклеточная регенерация, и скелетную ткань - регенерирует за счёт пролиферации и дифференцировки стволовых клеток. Основным механизмом восстановления является внутриклеточная регенерация. Затем возникла нервная ткань. Содержит глиальные клетки, они способны пролиферировать, но сами нервные клетки (нейроны) - высоко дифференцированные клетки. Они реагируют на раздражители, образуют нервный импульс и передают этот импульс по отросткам. Нервные клетки обладают внутриклеточной регенерацией. По мере дифференцировки ткани происходит смена ведущего способа регенерации - от клеточного до внутриклеточного.

Эпителиальные ткани

Это наиболее древние и наиболее распространённые в организме. Развиваются из всех трёх зародышевых листков. Выполняют защитную и барьерную функцию, обменную, трофическую, секреторную и выделительную.

Они подразделяются на покровные, которые выстилают тело и все полости, имеющиеся в организме, и железистые, которые вырабатывают и выделяют секрет. Все эпителиальные ткани являются пластом эпителиальных клеток. В них крайне мало межклеточного вещества. Эпителиальные клетки плотно прилегают друг к другу и прочно соединены клеточными контактами.

Для эпителиальных клеток характерна полярность - в базальной части почти всегда находятся ядро и органеллы. Здесь идёт синтез секретов, в верхушечной части накапливаются гранулы секрета и там располагаются микроворсинки и реснички. Полярность характерна для эпителиального пласта в целом. Внутри клетки содержат тонофибриллы, они выполняют функцию каркаса. Эпителиальный пласт всегда лежит на базальной мембране, которая содержит фибриллы и аморфное вещество и регулирует проницаемость. Под базальной мембраной находится рыхлая соединительная ткань, которая содержит кровеносные сосуды. Из них питательные вещества через базальную мембрану поступают в эпителий, а продукты обмена в обратном направлении. В самом эпителиальном пласте сосудов нет. Все эпителиальные ткани отличаются высокой способностью к регенерации за счёт деления и дифференцировки стволовых клеток. Регенерация усиливается при снижении концентрации в эпителиальной ткани кибионов.

Эпителий содержит большое число рецепторов. В эпителиях находятся иммунокомпетентные клетки. Это лимфоциты памяти и макрофаги, которые обеспечивают местный иммунитет. Покровный эпителий. Для него существует гистогенетическая классификация Хлопина. На первое место он поставил происхождение эпителия, поэтому его классификация имеет большое значение в онкологии в связи с метастазами опухолей. По филогенетической классификации эпителии делят на 5 типов:

1) эпидермальные эпителии эктодермального происхождения (кожные),

2) энтеродермальные эпителии кишечного типа,

3) целонефродермальные эпителии (почечного типа и целомический эпителий полостей - мезотелий),

4) ангиодермальный эпителий (эндотелий лимфатических и кровеносных сосудов и выстилка полостей сердца),

5) эпендимоглиальные эпителии (выстилка желудочков мозга и центрального канала спинного мозга).

Более распространена морфофункциональная классификация Заварзина. По ней все покровные ткани делятся на однослойные и многослойные эпителии.

Ведущей функцией однослойных эпителиев является обменная функция. Однослойные делятся на: однорядные, которые в зависимости от формы клеток подразделяются на: плоский эпителий, кубический эпителий, цилиндрический или призматический эпителий, и многорядный - эпителий, в котором все клетки лежат на базальной мембране, но имеют разную высоту, поэтому их ядра располагаются на разных уровнях, что при световой микроскопии создает впечатление многослойности (многорядности).

Выделяют многослойный эпителий, содержащий несколько слоев, этот эпителий плоский. Ведущая функция - защитная. Он подразделяется на плоский неороговевающий плоский ороговеваюший и многослойный переходный эпителий.

Однослойный плоский эпителий (эндотелий и мезотелий). Эндотелий выстилает изнутри кровеносные, лимфатические сосуды, полости сердца. Эндотелиальные клетки плоские, бедны органеллами и образуют эндотелиальный пласт. Хорошо развита обменная функция. Они создают условия для кровотока. При нарушении эпителия образуются тромбы. Эндотелий развивается из мезенхимы. Вторая разновидность - мезотелий - развивается из мезодермы. Выстилает все серозные оболочки. Состоит из плоских полигональной формы клеток, связанных между собой неровными краями. Клетки имеют одно, реже два уплощенных ядра. На апикальной поверхности имеются короткие микроворсинки. Они обладают всасывательной выделительной и разграничительной функциями. Мезотелий обеспечивает свободное скольжение внутренних органов относительно друг друга. Мезотелий выделяет на свою поверхность слизистый секрет. Мезотелий предотвращает образование соединительнотканных спаек. Достаточно хорошо регенерируют за счет митоза. Однослойный кубический эпителий развивается из энтодермы и мезодермы. На апикальной поверхности имеются микроворсинки, увеличивающие рабочую поверхность, а в базальной части цитолемма образует глубокие складки, между которыми в цитоплазме располагаются митохондрии, поэтому базальная часть клеток выглядит исчерченной. Выстилает мелкие выводные протоки поджелудочной железы, желчные протоки и почечные канальцы.

Однослойный цилиндрический эпителий встречается в органах среднего отдела пищеварительного канала, пищеварительных железах, почках, половых железах и половых путях. При этом строение и функция определяется его локализацией. Развивается из энтодермы и мезодермы. Слизистую желудка выстилает однослойный железистый эпителий. Он вырабатывает и выделяет слизистый секрет, который распространяется по поверхности эпителия и защищает слизистую оболочку от повреждения. Цитолемма базальной части также имеет небольшие складки. Эпителий обладает высокой регенерацией, которая зависит от среды, с которой контактирует эпителий (в желудке 1,5 суток, в кишечнике 2-2,5 суток), у детей регенерация идет быстрее.

Почечные канальцы и слизистая оболочка кишечника выстлана каёмчатым „эпителием. В каёмчатом эпителии кишечника преобладают каёмчатые клетки - энтероциты. На их верхушке располагаются многочисленные микроворсинки. В этой зоне происходит пристеночное пищеварение и интенсивное всасывание продуктов питания. Слизистые бокаловидные клетки вырабатывают на поверхность эпителия слизь, а между клетками располагаются мелкие эндокринные клетки. Они выделяют гормоны, которые обеспечивают местную регуляцию.

Однослойный многорядный реснитчатый эпителий. Он выстилает воздухоносные пути и имеет эктрдермальное происхождение. В нём клетки разной высоты, и ядра располагаются на разных уровнях. Клетки располагаются пластом. Под базальной мембраной лежит рыхлая соединительная ткань с кровеносными сосудами, а в эпителиальном пласте преобладают высокодифференцированные реснитчатые клетки. У них узкое основание, широкая верхушка. На верхушке располагаются мерцательные реснички. Они полностью погружены в слизь. Между реснитчатыми клетками находятся бокаловидные - это одноклеточные слизистые железы. Они вырабатывают слизистый секрет на поверхность эпителия. Имеются эндокринные клетки. Между ними располагаются короткие и длинные вставочные клетки это стволовые клетки, малодифференцированные, за счёт них идёт пролиферация клеток. Мерцательные реснички совершают колебательные движения и перемещают слизистую плёнку по воздухоносным путям к внешней среде.

Многослойный плоский неороговевающий эпителий. Он развивается из эктодермы, выстилает роговицу, передний отдел пищеварительного канала и участок анального отдела пищеварительного канала, влагалище. Клетки располагаются в несколько слоев. На базальной мембране лежит слой базальных или цилиндрических клеток. Часть из них - стволовые клетки. Они пролиферируют, отделяются от базальной мембраны, превращаются в клетки полигональной формы с выростами, шипами и совокупность этих клеток формирует слой шиповатых клеток, располагающихся в несколько этажей. Они постепенно уплощаются и образуют поверхностный слой плоских, которые с поверхности отторгаются во внешнюю среду.

Многослойный плоский ороговеваюший эпителий - эпидермис, он выстилает кожные покровы. В толстой коже (ладонные поверхности), которая постоянно испытывает нагрузку, эпидермис содержит 5 слоев:

Базальный слой - содержит стволовые клетки, дифференцированные цилиндрические и пигментные клетки (пигментоциты)

Шиповатый слой - клетки полигональной формы, в них содержатся тонофибриллы.

Зернистый слой - клетки приобретают ромбовидную форму, тонофибриллы распадаются и внутри этих клеток в виде зёрен образуются белок кератогиалин, с этого начинается процесс ороговения

Блестящий слой - узкий слой, в нём клетки становятся плоскими, они постепенно утрачивают внутриклеточную структуру, и кератогиалин превращается в элеидин.

Роговой слой - содержит роговые чешуйки, которые полностью утратили строение клеток, содержат белок кератин. При механической нагрузке и при ухудшении кровоснабжения процесс ороговения усиливается.

В тонкой коже, которая не испытывает нагрузки, отсутствует зернистый и блестящий слой.

Многослойный кубический и цилиндрический эпителий встречаются крайне редко - в области конъюнктивы глаза и области стыка прямой кишки между однослойным и многослойным эпителиями. Переходный эпителий (уроэпитлий) выстилает мочевыводящие пути и аллантоис. Содержит базальный слой клеток, часть клеток постепенно отделяется от базальной мембраны и образует промежуточный слой грушевидных клеток. На поверхности располагается слой покровных клеток - крупные клетки, иногда двухрядные, покрыты слизью. Толщина этого эпителия меняется в зависимости от степени растяжения стенки мочевыводящих органов. Эпителий способен выделять секрет, защищающий его клетки от действия мочи.

Железистый эпителий - разновидность эпителиальной ткани, которая состоит из эпителиальных железистых клеток, которые в процессе эволюции приобрели ведущее свойство вырабатывать и выделять секреты. Такие клетки называются секреторными (железистыми) - гландулоцитами. Они имеют точно такую же общую характеристику как покровный эпителий.

Секреторный цикл железистых клеток содержит несколько фаз.

1 - поступление в клетку исходных веществ из кровеносных капилляров.

2 - синтез и накопление секрета.

3 - выделение секрета.

Механизм выделения секрета определяется его плотностью, вязкостью. По характеру вырабатываемого секрета железистые клетки подразделяются на белковые, слизистые и сальные.

Очень жидкие секреты, как правило, белковые (напр.: слюнной секрет) выделяется по мерокриновому типу, клетка не разрушается.

Более вязкий секрет (напр., потовый секрет, молочный секрет) выделяется по апокриновому типу. При этом от верхушки отделяется часть клетки в виде капель, которые содержат секрет. Верхушка клетки разрушается.

Очень вязкий секрет (сальный секрет) выделяется при полном разрушении клетки - голокриновый тип секреции.

4- восстановление (регенерация) клетки, который идёт за счёт внутриклеточной регенерации для клеток, функционирующих по мерокриновому и апокриновому типам; при голокриновом типе секреции за счёт пролиферации стволовых клеток. Процесс регенерации идёт интенсивно.

Железистый эпителий входит в состав желез, образует железы, а железы - это органы. Они также возникают в процессе эволюции (филогенеза). В эмбриогенезе часть эпителиального пласта погружается в подлежащую соединительную ткань и превращается в железистый эпителий, который участвует в формировании желез.

Если связь с покровным эпителием утрачивается, то такие железы становятся эндокринными и свой секрет - гормон - они диффузно выделяют в кровь. Если связь желез сохраняется с покровным эпителием с помощью выводного протока, то такие железы называются экзокринными.

В экзокринных железах выделяют секреторный отдел, в которых вырабатывается секрет, и выводной проток. Через него секрет выводится (попадает) на поверхность покровного эпителия или в полость органов.

Основная масса желез - многоклеточные и лишь одна железа одноклеточная - бокаловидная слизистая клетка. Эта клетка располагается эндоэпителиально, а все другие железы - экзоэпителиальные и располагаются либо в стенке органов, либо образуют крупные самостоятельные органы. По строению железы подразделяются на простые и имеют один выводной проток и сложные (у них несколько выводных протоков, они ветвятся).

Различают неразветвлённые железы, когда в один выводной проток открывается один секреторный отдел, и разветвлённые, когда в один выводной проток открывается несколько выводных протоков.

По форме секреторного отдела различают альвеолярные железы, трубчатые железы и альвеолярно-трубчатые. По характеру вырабатываемого и выделяемого секрета железы делятся на белковые, слизистые, белково-слизистые и сальные железы.

Железы эктодермального происхождения являются многослойными и в секреторных отделах, и в мелких выводных протоках. Они содержат миоэпителиальные клетки, у которых маленькое тело и тонкие длинные отростки, которыми они охватывают снаружи секреторные клетки и эпителии выводных протоков. Сокращаясь, они способствуют выведению по протокам.

Железы энтодермального происхождения однослойные.

Все железы помимо железистого эпителия содержат соединительную ткань и большое количество кровеносных капилляров.

Железы характеризуются высокой способностью к регенерации. Все крупные железы являются сложными и разветвлёнными.

Опорно-трофические ткани

Они содержат клетки, межклеточное вещество в них хорошо выражено и занимает большой объём. В нём выделяют основное вещество и волокнистые структуры. Соединительные ткани выполняют опорную, формообразующую стромальную функции, также трофическую функцию. За счёт этого поддерживается гомеостаз - постоянство внутренней среды: выполняют как специфическую, так и неспецифическую защитные функции, пластическую функцию. Она отличается высокой способностью к регенерации.

Все разновидности соединительной ткани отличаются количеством и разнообразием клеточного состава, объёмом межклеточного вещества, количеством и степенью упорядоченности расположения волокон в межклеточном веществе.

В группе опорно-трофических тканей особое место занимают жидкие ткани - кровь и лимфа, все остальные объединены под названием соединительных тканей.

Все соединительные ткани подразделяются на:

Собственно соединительные ткани (волокнистые). Здесь выделяют рыхлую неоформленную соединительную ткань, плотные ткани, которые делят на плотную неоформленную соединительную ткань и плотную оформленную соединительную ткань.

Соединительные ткани со специальными свойствами. Сюда входит ретикулярная ткань, жировая, слизистая и пигментная ткани.

Скелетные соединительные ткани. К ним относятся хрящевые и костные ткани.

Рыхлая неоформленная соединительная ткань

Входит в состав кожи, сопровождает все кровеносные сосуды, лимфатические сосуды, нервы и входит в состав внутренних органов.

Она отличается чрезвычайным разнообразием клеточного состава, большим объёмом межклеточного вещества. Основное вещество полужидкое, студенистое, слабо минерализованное и в нём без какого-либо порядка находятся волокнистые структуры. Рыхлая соединительная ткань образует строму большинства органов и сопровождает кровеносные и лимфатические сосуды.

Основные функции: трофическая, защитная и она отличается наибольшей способностью к регенерации.

Среди клеток преобладают фибробласты. Это крупные отросчатые клетки, в них крупное овальное ядро, широкая цитоплазма, в которой в большом количестве находятся канальцы гранулярной эндоплазматической сети. Ведущей является белоксинтезирующая функция. Они вырабатывают межклеточное вещество (гликопротеины, протеогликаны, коллагеновые и эластиновые волокна). Часть из них является стволовыми, они способны быстро пролиферировать и дифференцироваться. За счёт фибробластов идёт быстрая регенерация рыхлой соединительной ткани. Функция фибробластов регулируется гормонами надпочечников [минералокортикоиды клубочковой зоны коры надпочечников усиливают коллагенообразование, а глюкокортикоиды пучковой зоны - ослабляют]. Фибробласты со временем превращаются в фиброциты - это мелкие клетки веретеновидной формы с мелким плотным ядром. Они утрачивают способность к пролиферации и белоксинтезирующую функцию. Макрофаги по размерам меньше фибробластов, у них базофильное округлое или овальное ядро, чёткие гранулы, цитоплазма образует выросты, в момент фагоцитоза хорошо развит лизосомальный аппарат. Они фагоцитируют (захватывают) чужеродные клетки, микроорганизмы, антигенные структуры, переваривают их внутри, т.е. участвуют в неспецифической защите. Они переводят корпускулярную форму антитела в молекулярную форму, и передаёт информацию об антигене другим иммунокомпетентным клеткам лимфоцитам. Они участвуют в специфической иммунной защите. Мечниковым обосновано учение о макрофагической системе. Моноциты из крови выходят в ткани и органы и там превращаются в макрофаги. При этом в разных органах и тканях приобретает свои особенности строения и специальные названия, но функции свои сохраняют. Макрофаги способны синтезировать и секретировать в окружающую ткань пирогены, лизоцим, интерлейкин I и др.

Среди клеток рыхлой соединительной ткани выделяют плазматические клетки. Они образуются из В-лимфоцитов крови и выделяют антитела в ответ на антигенное раздражение. Мелкие, округлой или овальной формы, резко базофильное эксцентрично расположенное ядро, у них сильно развита гранулярная эндоплазматическая сеть, перед ядром более светлый участок - пластинчатый комплекс. Эти клетки вырабатывают иммуноглобулины (антитела).

Рядом с кровеносными капиллярами располагаются базофильные или тучные клетки, лаброциты. Они развиваются из базофилов крови. Это крупные клетки, цитоплазма заполнена большим числом базофильных гранул, которые содержат биологически активные вещества – гепарин, гистамин и многие другие, которые выделяются из клеток. Гистамин усиливает проницаемость стенки капилляров и межклеточного вещества, гепарин снижает свёртываемость крови и проницаемость стенки капилляров и межклеточного вещества.

Среди клеток рыхлой соединительной ткани встречаются жировые клетки (липоциты). Они располагаются одиночно или небольшими скоплениями, шаровидные, в цитоплазме содержат крупную жировую каплю, а ядро и органеллы смещены на периферию. Также содержатся пигментные клетки или пигментоциты. Это отросчатые клетки с большим количеством пигмента, развивающиеся из нервного гребешка (эктодермы).

Постепенно в рыхлую соединительную ткань из крови поступают нейтрофильные и эозинофильные лейкоциты, лимфоциты.

Адвентициальные клетки. Они идут по ходу капилляров, веретеновидной формы, это стволовые клетки. Вероятно, они способны пролиферировать и дифференцироваться в фибробласты, липоциты, а также участвуют в регенерации кровеносных капилляров.

Вокруг кровеносных капилляров расположены клетки перициты. Они лежат в складках базальной мембраны.

В межклеточном веществе по объёму преобладает основное вещество, оно студенистое, полужидкое, в нём мало минеральных веществ, очень много воды, немного органических соединений, среди которых практически отсутствуют липиды, а преобладают гликопротеины. Среди них преобладают гликозаминогликаны (а именно, гиалуроновая кислота). В них имеются тканевые каналы, по которым движется тканевая жидкость, несущая питательные вещества из крови к рабочим клеткам, а продукты обмена в обратном направлении - от рабочих клеток к кровеносным капиллярам. Чем больше гликозаминогликанов, тем хуже проницаемость соединительной ткани.

В основном веществе рыхло, беспорядочно располагаются волокна. Среди волокон выделяют коллагеновые волокна - широкие, лентовидные, извитые. Они построены из белка коллагена. Основу коллагена составляют три полипептидных цепочки из аминокислот. Аминокислоты располагаются строго последовательно и определяют прочность волокна, его поперечную исчерченность и тип коллагенового волокна. Известно 12 типов коллагена. Они нерастяжимы, но их способность растягиваться усиливается в водной среде, особенно в слабокислых и слабощелочных растворах. Коллагеновые волокна определяют прочность ткани.

Эластические волокна - тонкие разветвлённые волокна, растяжимы, эластичны, но менее прочны. Основа - белок эластин, молекулы которого в волокне располагаются хаотично.

Ретикулярные волокна. Основа - белок коллаген, снаружи покрыты углеводной плёнкой; тоньше, чем коллагеновые и разветвлённые, создаётся трёхмерная сеть. Входит в состав многих органов, но особенно много в органах кроветворения (в селезенке, лимфоузлах). Волокна коллагена "прячутся"1 от красителя в складках цитолеммы фибробластов, поэтому их выявляют специальными способами, например: солями серебра (отсюда другое их название - аргирофильные волокна).

Воспалительная реакция

Клетки крови и соединительной ткани участвуют в защитной реакции. Это неспецифическая реакция развивается на любом повреждении, на внедрение инородного тела, следовательно реагируют тучные клетки (тканевые базофилы). Они выделяют гистамин гепарин, которые вызывают повышение проницаемости стенки капилляров и основного вещества соединительной ткани. Расширяются капилляры, усиливается кровоток (гиперемия). Нейтрофильные лейкоциты в большом количестве из крови выходят в соединительную ткань и направляются к зоне повреждения и образуют вокруг инородного тела лейкоцитарный вал (через 5-6 часов). Это соответствует лейкоцитарной фазе воспалительной реакции. Нейтрофильные лейкоциты фагоцитируют микроорганизмы, токсические вещества и быстро погибают.

Из крови в ткань поступают моноциты, они становятся макрофагами в ткани. Образовавшиеся макрофаги мигрируют в зону вала и там фагоцитируют разрушенные, погибшие клетки, инородные частицы и погибшие Нейтрофильные лейкоциты - макрофагическая фаза.

Позднее пролиферируют фибробласты, которые выбрасывают коллагеновые волокна, заполняющие зону повреждения и выталкивающие инородное тело, или формируют вокруг него соединительнотканную капсулу, отграничивающую его от окружающей ткани. Это фибробластическая фаза.

Плотная оформленная (волокнистая) соединительная ткань.

Они отличаются меньшим количеством клеток, клеточный состав менее разнообразен. В межклеточном веществе содержатся волокна и очень мало основного вещества.

В плотной неоформленной соединительной ткани коллагеновые волокна образуют пучки и в пучке они идут параллельно, и между ними находится небольшое количество фибробластов и фиброцитов. Пучки волокон переплетаются и образуют прочную сетевидную структуру. Между пучками располагаются тонкие прослойки рыхлой соединительной ткани с гемокапиллярами (кровеносными капиллярами). Эта ткань образует сетчатый слой кожи.

В плотной оформленной соединительной ткани все волокна идут плотно и параллельно друг другу. Из этой ткани образуются фиброзные мембраны - капсулы органов, апоневрозы, твёрдая мозговая оболочка, связки и сухожилия. В сухожилиях коллагеновые волокна (пучок первого порядка) располагаются параллельно, плотно, между ними - фиброциты фибробластов нет. Несколько коллагеновых волокон образуют пучок второго порядка. Между ними лежит тонкая прослойка рыхлой соединительной ткани с кровеносными капиллярами - эндотеноний.

Пучки второго порядка объединяются в пучки третьего порядка, которые разделяются перитенонием - более широкая прослойка. Способность к регенерации очень низкая.

Соединительные ткани со специальными свойствами

Ретикулярная ткань. Состоит из отросчатых ретикулярных клеток, которые соединяются отростками, и образуют сеть. По ходу их отростков идут ретикулярные волокна. Эта ткань составляет строму кроветворных органов, является микроокружением, то есть создаёт условия для кроветворения. Очень хорошо регенерирует.

Жировая ткань - может быть белая и бурая. Белая жировая ткань характерна для взрослых, содержит скопления жировых клеток, которые образуют жировые дольки. Между ними идут прослойки рыхлой соединительной ткани с кровеносными капиллярами. Жировые клетки накапливают нейтральный жир. Объём клетки меняется. Белая жировая ткань образует подкожную жировую клетчатку, капсулу вокруг органов. Служит источником воды, энергии. Бурый жир присутствует в эмбриогенезе и у новорождённых. Он более энергоёмкий.

Пигментная ткань. Представлена скоплениями пигментных клеток в определенных участках тела (сетчатка глаза, радужна, сосок, родимые пятна).

Слизистая ткань. В норме имеется в эмбриогенезе и в пуповине, содержит студенистое полужидкое основное вещество, богатое гликозаминогликанами. и в нём располагаются в небольшом количестве мукоциты (сходны с фибробластами) и редкие тонкие коллагеновые волокна.

Хрящевые ткани. Они выполняют механическую, опорную, защитную функции. В них упругое плотное межклеточное вещество. Содержание воды до 70- 80%, минеральных веществ до 4-7%, органические вещества составляют до 10-15%, и в них преобладают белки, углеводы и крайне мало липидов. В них выделяются клетки и межклеточное вещество. Клеточный состав всех разновидностей хрящевых тканей одинаковый и включает хондробласты - малодифференцированные, уплощенные клетки с базофильной цитоплазмой, они способны пролиферировать и вырабатывать межклеточное вещество. Хондробласты дифференцируются в молодые хондроциты, приобретают овальную форму. Они сохраняют способность к пролиферации и выработке межклеточного вещества. Затем малые дифференцируются в более крупные, округлые зрелые хондроциты. Они утрачивают способность к пролиферации и выработке межклеточного вещества. Зрелые хондроциты в глубине хряща скапливаются в одной полости и называются изогенными группами клеток.

Отличаются хрящевые ткани строением межклеточного вещества и волокнистыми структурами. Различают гиалиновую, эластическую и волокнистую хрящевые ткани. Они участвуют в образовании хрящей и образуют гиалиновый, эластический и волокнистый хрящ.

Гиалиновый хрящ выстилает суставные поверхности, находится в зоне соединения рёбер с грудиной и в стенке воздухоносных путей. Снаружи покрыт надхрящницей - перихондрий, который содержит кровеносные сосуды. Её периферическая часть состоит из более плотной соединительной ткани, а внутренняя часть из рыхлой, содержит фибробласты и хондробласты. Хондробласты вырабатывают и выделяют межклеточное вещество и обусловливают аппозиционный рост хряща. В периферической части собственно хряща находятся молодые хондроциты. Они пролиферируют, вырабатывают и выделяют хондромукой (хондроитинсульфаты * протеогликаны), обеспечивая рост хряща изнутри.

В средней части хряща находятся зрелые хондроциты и изогенные группы клеток. Между клетками располагается межклеточное вещество. Оно содержит основное вещество и коллагеновые волокна. Сосуды отсутствуют, питается он диффузно из сосудов надкостницы. В молодом хряще межклеточное вещество оксифильное, постепенно становится базофильным. С возрастом, начиная с центральной части, в нём откладываются соли кальция, хрящ обызвествляется. становится хрупким, ломким.

Эластический хрящ - образует основу ушной раковины, в стенке воздухоносных путей. Он аналогичен по строению гиалиновому хрящу, но содержит не коллагеновые, а эластические волокна, и в норме он никогда не обызвествляется.

Волокнистый хрящ - он находится в зоне перехода связок, сухожилий с костной тканью, в участке, где кости покрыты гиалиновым хрящом и в зоне межпозвоночных соединений. В нем грубые пучки коллагеновых волокон идут продольно оси натяжения, являясь продолжением сухожильных нитей. Волокнистый хрящ в области прикрепления к кости больше похож на гиалиновый хрящ, а в области перехода в сухожилие - на сухожилие.

Костные ткани

Они формируют костный скелет тела человека. Для костной ткани характерна очень высокая степень минерализации (70%), в основном за счет фосфата кальция. Межклеточное вещество представлено преимущественно коллагеновыми волокнами, основного склеивающего вещества очень мало. Из органических веществ в основном преобладают коллагеновые белки.

Различают следующие виды костной ткани:

Грубоволокнистую или ретикулярно-фиброзную ткань. Эта ткань имеется в эмбриогенезе. У взрослых из нее построены швы плоских костей черепа:

Пластинчатую костную ткань.

Клеточный состав этих двух видов тканей одинаков. Есть остеобласты - клетки образующие костную ткань. Они крупные, округлой или кубической формы, с хорошо развитым белоксинтезирующим аппаратом, вырабатывающим коллагеновые волокна. Этих клеток много в растущем организме и при регенерации костей. Остеобласты превращаются в остеоциты. У них мелкое овальное тело и длинные тонкие отростки, которые располагаются в костных канальцах, анастомозируют между собой. Эти клетки не делятся, не вырабатывают межклеточное вещество.

Остеокласты - очень крупные клетки. Они происходят из моноцитов крови, являются макрофагами костной ткани, многоядерные, в них хорошо развит лизосомальный аппарат и на одной из поверхностей имеются микроворсинки. Из клетки в зону микроворсинок выделяются гидролитические ферменты, которые расщепляют белковую матрицу кости, в результате чего высвобождается и вымывается из костей кальций.

Межклеточное вещество содержит коллагеновые (оссеиновые) волокна. Эти волокна широкие, лентовидной формы и в пластинчатой костной ткани располагаются параллельно и прочно склеены между собой основным веществом. Именно эти волокна образуют костные пластинки.

В соседних костных пластинках коллагеновые волокна идут под разными углами, за счет этого достигается высокая прочность костной ткани. Между костными пластинками находятся тела остеоцитов, отростки которых пронизывают костные пластинки. В грубоволокнистой костной ткани костные волокна идут беспорядочно, переплетаются друг с другом и образуют пучки. Между волокнами залегают остеоциты.

Кости взрослого человека построены из пластинчатой костной ткани, причем она формирует компактное вещество кости, содержащее остеоны и губчатое вещество кости (в нем остеоны отсутствуют).

Эпифизы трубчатых костей построены из губчатой костной ткани, а диафизы - из компактного костного вещества.

Строение диафиза трубчатой кости

Снаружи диафиз покрыт надкостницей или периостом. Ее наружный слой построен из более плотной волокнистой соединительной ткани, а внутренний - из более рыхлой. Во внутреннем слое находятся фибробласты и остеобласты, в надкостнице располагаются кровеносные сосуды и рецепторы.

Из надкостницы прободающие коллагеновые волокна внедряются в вещество кости, поэтому надкостница очень плотно связана с веществом кости. Далее располагается собственно вещество кости, которое построено из пластинчатой костной ткани - компактное вещество, содержащее остеоны. Пластинки образуют 3 слоя. Наружный слой общих пластинок содержит крупные концентрические пластинки. Внутренний слой общих пластинок располагается ближе к костномозговому каналу. Эти пластинки более мелкие, чем наружные. Изнутри костный выстлан рыхлой соединительной тканью, которая содержит кровеносные сосуды и называется эндостом.

Между наружным и внутренним слоями располагается остеонный слой. Этот слой содержит остеоны - это структурно-функциональные единицы кости. Остеон содержит костные пластинки в виде цилиндров разного диаметра. При этом мелкие цилиндры вставлены в более крупные, располагаются они продольно оси диафиза. Внутри остеома находится канал, содержащий кровеносный сосуд. Эти сосуды соединяются.

Между остеонами находятся вставочные пластинки - остатки разрушающихся остеонов. В норме разрушение и восстановление остеонов происходит постоянно.

Между костными пластинками во всех слоях находятся остеоциты, отростки которых по костным канальцам пронизывают все вещество кости и в ней формируется сильно разветвленная сеть костных канальцев по которым мигрирует тканевая жидкость.

Кровеносные сосуды (артерии) из надкостницы по прободающим каналам попадают в остеон, затем проходят по каналам остеонов, соединяются между собой. Питательные вещества из сосудов поступают в каналы остеона и по системе канальцев быстро распространяются во все участки костной ткани.

В эпифизах и перекладинах трубчатых костей остеоны отсутствуют - губчатое костное вещество.

Гистогенез (образование) костной ткани и костей

Выделяют 2 механизма:

1. Прямой остеогенез - образование костей прямо из мезенхимы. Таким механизмом образуются плоские кости на втором месяце эмбриогенеза. Мезенхимные клетки в том месте, где будет формироваться кость, усиленно размножаются, группируются, утрачивают отростки, превращаются в остеокласты, формируются остеогенные островки. Остеобласты начинают вырабатывать и выделять межклеточное вещество, замуровывая тем самым себя. Эти замурованные клетки превращаются в остеоциты. В результате образуются костные балки. Далее происходит кальцинация. Снаружи костной балки распределяются остеобласты, а основу составляет грубо волокнистая костная ткань. Из мезенхимы в костные балки врастают кровеносные сосуды. Вместе с кровеносными сосудами врастают и остеокласты, разрушающие грубоволокнистую костную ткань, на месте которой образуется плотная пластинчатая костная ткань. В результате происходит полная замена грубоволокнистой костной ткани на пластинчатую.

2. Непрямой остеогенез - образование кости на месте гиалинового хряща. Таким образом, образуются все трубчатые кости. На месте будущей кости из гиалинового хряща формируется зачаток трубчатой кости, снаружи он покрыт надкостницей. Этот процесс протекает на втором месяце эмбриогенеза. Далее в области диафиза между надкостницей и веществом хряща образуется из грубоволокнистой костной ткани перихондральная кость или перихондральная

костная манжетка, которая полностью окружает вещество хряща в зоне диафиза и тем самым нарушает поступление питательных веществ из надхрящницы в хрящ. Это вызывает частичное разрушение гиалинового хряща в диафизе, а остатки хряща обызветствляются. Надхрящница превращается в надкостницу, и из надкостницы кровеносные сосуды пронизывают костную манжетку. При этом грубоволокнистая ткань костной манжетки разрушается и замещается

пластинчатой костной тканью. Кровеносные сосуды глубоко врастают в диафиз, вместе с ними проникают остеобласты, остекласты и мезенхимные клетки. Остеокласты постепенно разрушают обызвествленный хрящ, а остеобласты вокруг участков обызвествленного хряща образуют пластинчатую костную ткань, которая формирует эндохондральную кость.

Перихондральная и эндохондральная костные ткани разрастаются, соединяются, остеокласты начинают разрушать костную ткань в средней части диафиза, и постепенно формируется костномозговой канал (полость). Из мезенхимы

закладывается красный костный мозг.

Позднее осуществляется окостенение эпифиза, между эпифизами и диафизом сохраняется метаэпифизарный хрящ (зона роста кости). За счет этой пластинки кость растет в длину. В ней выделяют пузырчатый слой на границе с диафизом, содержащий разрушающиеся клетки. Затем идет столбчатый слой, в котором молодые хондроциты образуют ряды. Молодые хондроциты пролиферируют, образуют межклеточное вещество. Также выделяют пограничный слой, имеющий строение типичного гиалинового хряща. Эти пластинки окостеневают последними.

Костная ткань в общем, и кости в частности хорошо регенерируют за счет метаэпифизарных стволовых клеток надкостницы. В начале с помощью фибробластов надкостницы образуется рыхлая соединительная ткань. Далее активируются остеобласты, вырабатывающие грубоволокнистую костную ткань. В течение первых двух недель она заполняет зону повреждения и формирует костные мозоли.

Со 2 недели в костные мозоли внедряются кровеносные сосуды, и грубоволокнистая костная ткань замещается пластинчатой костной тканью.

На развитие, рост и регенерацию костной ткани и костей существенно влияют: физическая нагрузка, оптимальный пищевой режим (пища должна содержать достаточное количество белка, кальция, витаминов), гормоны роста, тиреоидные и половые гормоны.



Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.